DHA TANKER TO THE PARTY OF THE

大原縣 人

AHHARIPATE (公示本)

福建省晋江圳源环境科技有限责任公司 注: 厦门大学规划设计研究所有限公司 2025年9月 建设单位:编制学

八学规划设计 2025年9月

1总则

1.1 评价目的与指导思想

1.1.1 评价目的

- (1)作为福建省集成电路工业园污水处理厂项目一期工程,对项目拟采取工艺与工业废水特征的适用性和可行性进行分析。
 - (2)对区域环境现状和海域环境质量现状开展调查与分析,对项目建设前后可能带的各种环境影响进行定性或定量分析和比较,预测并评价其影响范围和程度。
- (3)对拟采取的环保措施的可行性进行分析,并提出可行的环保措施意见加以落实, 以减轻工程运行所带来的不利影响。
- (4)通过公众参与调查, 收集公众对本项目建设方案的意见, 以及对本项目环境保护的要求, 进而提出环保对策措施建议。
- (5)为建设项目环境管理、区域地区经济发展规划、区域环境保护规划、区域污染 防治、本项目环评审批以及项目的建设和运行的环境管理等提供依据。

1.1.2 评价指导思想

- (1)坚持污染控制全过程管理的原则,本项目在环境管理上遵循清洁生产、循环经济、固废合理妥善处置、废气治理、工艺设计、工程建设、运行管理和工程验收等各个环节,尽可能全面考虑项目所涉及到的各种技术要求和环境管理要求。
- (2)坚持科学性、成熟性和实用性原则。选择符合工业废水处理技术规范的、应用 面较广、且在国内已有成功经验的工程应用实例废水治理技术。在技术选择上要坚持 高效节能、管理简便、稳定可靠的处理工艺和技术,力求有效达标、环境可接受性、 技术可行性和相关方的经济承受能力的协调。

1.2 编制依据

1.2.1 项目有关立项及委托依据

- (1) 项目环评任务委托书(附件一):
- (2) 项目立项备案表(附件二)。

1.2.2 环境影响评价管理的相关法律、法规依据

- (1)《中华人民共和国环境影响评价法》,主**席**令第 24 号,2018 年 12 月 29 日 正;
- (2)《建设项目环境保护管理条例》,国务院令第 682 号,2017 年 10 月 1 日起施行:
- (3)《建设项目环境影响评价分类管理名录》,生态环境部令第46号,2021年1月1日起施行;
 - (4)《关于印发福建省建设项目环境影响评价文件分级审批管理规定的通知》(闽环

发[2015]8号),福建省生态环境厅,2015年8月6日起施行

- 月20日起施行;
- -步加强环境影响评价管理防范环境风险的通知》(环发62012)77 号), 环境保护部,2012年7月3日;
- 图 《关于切实加强风险防范严格环境影响评价管理的通知》(环发[2012]98 号),环
 - (9)《突发环境事件应急管理办法》,环保部令第34号,2015年6月5日起施行;
- (10)《关于建设项目环境影响评价工作中确定防护距离标准问题的复函》(环函 [2009]224号), 环境保护部, 2009年9月18日;
- (11)关于印发《建设项目环境保护事中事后监督管理办法(试行)》的通知(环发 [2015]163/号),环境保护部,2015年12月10日;
 - 12)《大气污染防治行动计划》(国发[2013]37号),2013年9月10日;
 - 行动计划》(国发[2015]17号),2015年4月2日;
- (14)《福建省大气污染防治行动计划实施细则》(闽政[2014] 号), 2014年1月5 日;
- 闽政[2015]26号,2015年6月36 日;
- 行。

1.2.3国家法律、法规及文件依据

- (1)《中华人民共和国环境保护法》 , 2015年1月1日起施行;
- (2)《中华人民共和国水污染防治法》,2018年1月1日修订并施行;
- (3)《中华人民共和国大气污染防治法》,2018年10月26日修订并施行;
- (4)《中华人民共和国环境噪声污染防治法》,2018年12月29日修订并施行;
- (5)《中华人民共和国固体废物污染环境防治法》, 2020年4月29日修订;
- (6)《中华人民共和国土壤污染防治法》,2019年1月1日起施行;
- (7)《中华人民共和国海洋环境保护法》,2017年11月4日第三次修订。 11月多日起施行;
 - ⑻《中华人民共和国清洁生产促进法》,2012 年 7 月 1 日起施行
 - 和国循环经济促进法》, 2018年10月26日修订并施行;
 - 共和国海域使用管理法》,2002年1月1日起施行;

- (11)《中华人民共和国防治海岸工程建设项目污染损害海洋环境管理条例》,2018 年 3 月 19 日修订并**实施**;
- (12)《国务院关于加强环境保护重点工作的意见》, 国发[2011]35 号, 2011 年10 月 17 日;
- (13)国家发展和改革委员会《产业结构调整指导目录》(2019年本)及国家发展改革委关于修改《产业结构调整指导目录(2019年本)》有关条款的决定,自2022年1月10日起施行;
- (14)《关于加强环境噪声等染防治工作改善城乡声环境质量的指导意见》,环发 [2010]144 号,2010 年 12 月 15 日;
 - (15)《关于印发城市污水处理及污染防治技术政策的通知》,建城[2000]124号;
- (16)《国务院关于加强城市供水、节水和水污染防治工作的通知》,国发[2000]36号:
 - (17)《国务院关于印发水污染防治行动计划的通知》(国发[2015]17号)。

1.2.4 地方法规及相关规划

- (1)《福建省生态环境保护条例》,2022年5月1日起施行;
- (2)《福建省海洋环境保护条例》,2002年12月1日起施长;
- (3)《福建省水污染防治条例》,2021年11月1日起施行;
- (4)《福建省近岸海域环境功能区划(修编)》(2011~2012年),2011年6月;
- (5)《福建省海洋环境保护规划》(2011~2012年), 2011年6月;
- (6)《福建省海洋功能区划》(2011~2012年), 2012年10月;
- (7)《福建省水环境功能区划》,福建省人民政府,2004年1月;
- (8)《泉州市海洋功能区划》,2010年修编;
- (9)《泉州市环境空气质量功能区类别划分方案》,泉州市人民政府 1999年 12月;
- (10)《泉州市近海水域环境污染综合治理方案》,2006年
- (11)《晋江市市域环境规划修编》,晋江市人民政府 1998年8月;
- (12)《晋江市生态功能区划》,晋江市人民政府,2003年8月;
- (13)《晋江市城市总体规划 (2010~2030)》,晋江市人民政府, 2014年8月,
- (14)《福建普江经济开发区安东园控制性详细规划调整》,中国城市规划设计研究院厦门分院,2008年8月。

1.2.5 技术标准及规范

- (1)《环境影响评价技术导则一总纲》,HJ2.1-2016,2017年17月1日实施;
- (2)《环境影响评价技术导则一生态影响》,HJ19-2022,2022年7月1日实施;
- (3)《环境影响评价技术导则一大气环境》, HJ2.2-2018, 2018年12月1日实施;

- (4)《环境影响评价技术导则一声环境》, HJ2.4-2021 年 7 月 1 日实施;
- (5)《环境影响评价技术导则一地表水环境》, HJ2 3-2018, 2019年3月1日实施。
- (6)《环境影响评价技术导则一地下水环境》, HJ610-2016, 2016年1月7日实施;
- (7)《声环境功能区划分技术规范》, GB/T15190-2014, 2015年1月1日实施;
- (8) 《建设项目环境风险评价技术导则》, HJ169-2018, 2019年3月、日实施;
- (9)《防治城市扬尘污染技术规范》,HJ/T393-2007, 2008年2月1日实施;
- (10)《突发环境事件应急监测技术规范》,HJ589-2021,2022年3月1日实施;
- (11)《水污染治理工程技术导则》, HJ2015-2012, 2012年6月1日实施;
- (12)《厌氧-缺氧-好样活性污泥污水处理工程技术规范》HJ576-2010, 2011年1月 1日实施;
- (13)《城镇污水处理厂运行监督管理技术规范》,HJ2038-2014, 2014 年 9 月 1 日 实施;
- (14) 城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)》, HJ-BAT-002,2010年3月1日;
 - (15)《污染源源强核算技术指南 准则》,HJ884-2018, 2018 年 3 月 27 日实施;
- (16)《排污单位自行监测技术指南 水处理》,HJ1083-2020, 2020年4月1日实施。

1.2.6 工程规划及参考资料

- (1)《福建省集成电路产业园区(工业园)控制性详细规划修编》,2022年5月2日;
- (2)《晋江市城市总体规划(2010-2030)修编》,晋江市人民政府,2022 年 月 27 日:
- (3)《晋江市东石综合改革建设试点镇总体规划》(2011-2030),晋江市东石镇人民政府:
 - (4)《晋江市集成电路产业发展规划纲要(2016-2025)》
- (5)《福建省集成电路工业园污水处理厂项目一期工程项目申请报告》,信息产业电子第十一设计研究院科技股份有限公司,2024年6月。

1.3 环境影响因素识别和评价因子筛选

1.3.1 环境影响因素识别

(1)施工期环境影响因素识别

参项目为新建工程,施工期环境影响因素主要包括施工过程产生的施工扬尘、运输车辆道路扬尘和尾气对大气环境的影响;施工现场机械噪声及各类运输车辆的噪声影响;施工过程产生的废建筑材料及施工人员少量的生活垃圾的影响,基坑开挖泥沙水排放问题等。有关施工期环境影响因素识别结果见表1.3-1。

O KILLY.	小人们
表 1.3-1 本项目施工期环境影响因素设	

		水 1:0-1 本火口ルニスパープ	ルグ・コンドコ カベ かくかり	
序号	环境要素	影响因素	影响特征	控制方式
		①运输道路扬尘、车辆尾气排放	7	粉尘:加强道路清扫、洒水和
1	大气环境	②粉料堆存扬尘	短期, 可逆性	对车辆清洗 //
		③物料运输扬尘		车辆尾气无组织排放 ///
2	声学环境	①施工机械噪声	短期,不可逆性	加强施工期间管理和开展施工期间的环境监理工作
2	p + 100	乙运制牛辆采户	应朔, 不了过任 ————————————————————————————————————	期间的环境监理工作
	11/25	①施工人员生活污水		生活污水利用临时化粪池处理
3	水环境	②施工废水 如		排入园区市政管网至远东污水
3	小小児	③冲洗废水		处理厂; 施工废水和冲洗废水
/ / // 		④基坑排水 ***		经隔油沉淀后尽量回用不外排
(2)		①建筑废物		生活垃圾由环卫部门清运处
7 4	固体	②生活垃圾 人类	短期, 可逆性	理;建筑垃圾用于道路填方;
		③挖方 0.44		挖方回填

及污泥浓缩等设施)气体对局部区域大气环境的影响;污水处理厂尾水排放对近岸海域的影响;水泵、污泥脱水设备、鼓风机等机械设备噪声对周围声环境的影响;以及污泥、办公垃圾和生活垃圾等固体废物的影响。具体见表1.3-2。 表 1.3-2 本项目运行期环境影响因素识别结果一览表

				2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	原号	环境要素	环境影响因素	项目工程行为 项目工程行为	环境影响特征
1	+ 1	水环境		拟建项目尾水排放对纳污海域水质的影响	局部影响
	2	大气环境	局部环境空气质量	污水处理设施产生的恶臭气体影响	同上
	3	声学环境	声环境质量	水泵、污泥脱水设备、鼓风机等机械设备噪声的影响	同上
	4	固体废物	生产周废、生活垃圾等 基体废物	浓缩污泥及生沽垃圾等的影响	同上
	5	社会经济	促进当地经济发展	有利于区域污水集中处理	长远影响

1.3.2 评价因子筛选

根据上述环境影响因素识别,确定本项

		4C 1.0 0	火口 一大沙仙 1 川口 1 师及 1 小
序号	影响因素	项目	评价因子
1	地表水环境	现状评价因子	水温、pH值、化学需氧量、溶解氧、五日生化需氧量、总磷、氨 氮、氯化物、氟化物、硫化物、石油类、阴离子表面活性剂、六价 铬、镉、铜、锌、铅、汞
		影响评价因子	COD、BOD5、SS、总氮、总磷、石油类等
2	地下水环境	现状评价因子影响评价因子	pH 值、耗氧量、氨氮、硝酸盐氮、亚硝酸盐氮、氰化物、氟化物、 六价铬、Hg、Cd、Pb、Ni、Fe、Zn、Cu、As、总大肠菌群、硫化 物、苯胺、DMF、锑、K+Na、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ²⁻ 、HCO ₃ -、SO ₄ 、 Cl ⁻ COD、氨氮等
3	环境空气	现状评价因子 影响评价因子	SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、CO、O ₃ 、NH ₃ 、H ₂ NH ₃ 、H ₂ S、臭气
4	国体废物	现状评价因子 影响评价因子	—————————————————————————————————————
秀	声环境	现状评价因子 影响评价	等效声级(L _{Aeq}) 等效声级(L _{Aeq})
*	l	1 2 2 2 1 1 1	(Lacy)

1.4.1 环境功能区划及环境质量标准

		V		17	
总则				• 6	· (-1/2)
1.4.1 环境〕	功能区划及环境质量标准		W. T.		_
(1)大生	气环境功能。		Ø4	v.	1/5-PA '
项目位	立于福建省集成电路工业员	园区(工业园),	项目区域属于《环	境空气质量标准	
(GB3095-2	012年的大气环境功能二	类区,执行(GB3095-2012 二级标	准,见表 1.4-1。	
	表 1.4-1 耳	不境空气质量		T. T.	_
序务	污染物名称	10.15.15	二级标准浓度限值(με		_
		华均值	24 小时均值	1 小时平均	_
. ☆ 1 '	SO_2	60	150	500	_
2	NO_2	40	80	200	
3	CO (K)		4000	10000	
4	O ₃		160(日最大 8h 平均)	200	
5	PM_1	70	150	_	
6	PM2.5	35	Zis. 75	_	
7	TSP TSP	200	300	_	7
8	NOx	50	100	250	_

大气特征污染物氨、硫化氢参照执行《工业企业设计卫生标准》(TJ36-79)中的"居住 区大气中有害物质最高允许浓度"标准, 观表 1.4-2。

表 1.4-2 特征污染物环境质量参考标准一览表

			·· = 19 P= (32 4 \$\(1 \)007(2= 2	
	序号	污染物名称	一次最高容许浓度(mg/m³)	标准表源
	Ϋ́T	NH ₃	0.20	T126 70
1	2	H_2S	0.01	1136-79

(2)水环境

①地表水环境

污水处理厂周边主要地表水体为潘径溪和新港河,潘径溪和新港河均未进行环 功能区划定,现状功能为行洪、纳污和农灌,本次评价按《地表水环境质量标准 3838-2002)V 类水质进行评价。具体见表 1.4

表	1 1_3	环境察	学活 ·	骨栏湖	=─
<i>A</i> 22	I .4)	MIND TO	T. ID.	99 <i>T</i> VN / H	- — m 🛪

	134/7	_		/T
۶	单1	/ :	mg	7/

		76-7C
序号	项目	标准限值
1	水温	<u> </u>
<i>z</i> v. 2	pH值	6~9
3	化学需氧量	40
4	溶解氧	2
5	五日生化需氧量	10
6	总磷	0.4
7	氨氮	2.0
8	氯化物	250
9 1	氟化物 🔍	1.5
10	硫化物	1.0
11 37	石油类	1.0
.12 -	阴离子表面活性剂	0.3
// 13	六价铬	0.1
14 M	镉	0.01
15	铜	1.0
16	4 锌	2.0
17	铅 铅	0.1
18	汞	0.001

基本基準提供。

	表 1.4-4	海水	火质标准限值	(单位:	mg/L	pH 除外`)一览表
--	---------	----	---------------	------	------	--------	------

序号	污染物	pH/-	COD	DO	无机氮	石油类	活性磷酸盐
1	第三类标准值	6.8~8.8	≤4	>5	≤0.4	≤0.30	≤0.030
2	第二类标准值 🖟	7.8~8.5	≤3	>4	≤0.3	≤0.05	≤0.030
序号	污染物 –	汞	镉	铅	砷	铜	锌
1	第三类标准值	0.0002	0.01	0.01	0.05 م	0.050	0.10
2	第二类标准值	0.0002	0.005	0.005)	0.03	0.010	0.050

③地下水环境

评价区域地下水未进行功能划分,评价区域地下水按照"以人体健康为依据,主 要适用扩集中式生活饮用水水源及工 (农业用水", 执行《地下水质量标准》(GB/T 14848-2017)III类标准。见表 1.4-5

表 1.	.4/5~}\b. ⁻	下水质	量评的	个标准	一览表
- V -		1 73 7125	= 1 1	1 1/J*/ P	- 2007

单	立	:	m	g/	\mathbf{L}

<i>N</i>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,心下小火里灯川1小庄	JU1K	于 工 i mg/ L
	序号	污染物名称 pH 色度	标准浓度限值	JENZ STATE OF THE	标准来源
	1	pH //	6.5~8.5	Du T	
	2	色度	≤15		
	3	总硬度 以CaCO3 计	≤450		H.
	4	高锰酸盐指数	≤3.0 ≤3.0		大"牌牌"
	5	耗氧量	≤3.0		χ,/
	6	美	≤0.5		
	7	硝酸盐(以N计)	\$20\ \$\frac{1}{2}\tau_{0.002}		
	8	亚硝酸盐(以N计)	//St20		A CONTRACTOR OF THE PARTY OF TH
	9	挥发酚	€0.002		<u></u>
	10	氰化物	≤0.05		
	11	氟化物	≤1.0		★ '
Zi.	. 12	氯化物 🔨	≤250	12	7
	13	硫酸盐	≤250		
*/)	14	六价格	≤0.05	CONT. 1	下水质量标准》 1949 2017)III * 标准
-/!-	15	汞	≤0.001	(215) 1 12	下水质量标准》 4848-2017)III类标准
湖湖	16	镉	≤0.005		(-)
The H	17	铅	≤0.01		
	18	镍	≤0.02		· · · · · ·
	19	铁锌	≤0.3 🔨		
	20		≤1.0		117
	21	铜	≤1.0		- W-5
	22 -	砷	≤0.01		
	23	锑	≤0.005		
	23	锰	≤0.01		
		溶解性总固体	≤1000	_ 1	××-′
	26	细菌总数	≤100(↑/L)	B	供表表現相關。 1275年
, (27	总大肠菌群 ***	≤3.0(CFU/100mL)		

行《海洋沉积物质量》(GB18668-2002)中第二类标准限值;围头湾海域(即东起围头角 西至石井沿岸海域)属于养殖、旅游区,海洋沉积物质量执行《海洋沉积物质量》 (GB18668 2002)中第一类标准限值,见表 1.4-6。

表 1.4-6	海洋沉积物质量标准限值一	览表
---------	--------------	----

	·p4 ±11 0 /-y			
原号	项目	*第一类标准值	第二类标准值	第三类标准值
1	有机碳(×10⁻²)≤ 、	2.0	3.0	4.0
2	硫化物(×10⁻⁶)≤ ※	300.0	500.0	600.0
3	石油类(×10-%)	500.0	1000.0	1500.0
4	铜(×101)×	35.0	100.0	200.0
5	铬(×10°)≤	80.0	150.0	270.0
6	铅(×10⁻⁶)≤	60.0	130.0	250.0
7	(×10 ⁻⁶)≤	20.0	65.0	93.0
8	字(×10⁻⁶)≤	150.0	350.0	600.0

本项目位于福建省集成电路工业园区(工业园),区域声环境功能为3类区,执行《声 环境质量标准》(GB3096-2008)3 类标准, 见表 1.4-7。

, Q	KY-	表 1.4-7/ 声环境质量	量标准限值一览表	学》 单位: dB(A)
1/1	序号	类别	昼间 🚻	夜间
	1	3 *	65	55
		./. **/	//3. 1/	

(5)土壤环境

评价区域土壤属于工业园区,根据"保障农业生产 行《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)第二类用 具体执行标准指标见表 1.4-8。

	表]	1.4-8 土壤环境	竟质量评 价排	旨标一览表	Ą	算位: mg/kg
序号	污染物项目	CAS 编号	筛 货 第一类用地	[₺] 値 第二类用地	第一类用地	同值 第二类用地
重金属	和无机物	137-7			, (X)	
V _L 1	砷	7440-38-2	20	60	120	140
V 2	镉	7440-43-9	20	65	47	172
3	铬(六价)	18540-29-9	3.0	5.747-5	30	78
4	铜	7440-50-8	2000	18000	8000	36000
5	铅	7439-92-1	400	800	800	2500
6	汞	7439-97-6	8	38	33	82
7	镍	7440-02-0	150	900	600	2000
挥发性			4			
8	四 氯化碳	56-23-5	0.9	2.8	9	/36
9	氯仿	67-66-3	0.3	0.9	5	10
10	氯甲烷	74-87-3	12	37	21	120
11 🕢	1,1-二氯乙烷	75-34-3	3	9	20	100
12/5	1,2-二氯乙烷	107-06-2	0.52	5	×6/	21
1 3	1,1-二氯乙烯	75-35-4	12	66	40	200
14	顺-1,2-二氯乙烯	156-59-2	66	596	200	2000
15	反-1,2-二氯乙烯	×156-60-5	10	54	31	163
16	二氯甲烷	75-09-2	94	616	300	2000
	15/1				-	

			\(\sigma\)	\$ -		管制	>
			A A	•		A LIZA	
					Ų.		
	总则					(V	• 10 •
		\- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		筛设	E值 、X	管制	11值
	序号	污染物项目	CAS 编号	第一类用地	第二类用地	第一类用地	第二类用地
	17	1,2-二氯丙烷	78-87-5	1	5	5	47
	18	1,1,1,2-四氯乙烷	630-20-6	2.6	10	26	100
	19	1,1,2,2-四氯乙烷	79-34-5	1.6	6.8	14	50
	20	四氯乙烯	127-18-4	11	53	34	₹/ 1 /83
	21	141-三氯乙烷	71-55-6	701	840	840	840
	22	1,1,2-三氯乙烷	79-00-5	0.6	2.8	5 💢	15
	23 <	▼ 三氯乙烯	79-01-6	0.7	2.8	7.0	20
	24 、	1,2,3-三氯丙烷	96-18-4	0.05	0.5	0.5	5
	, <23	氯乙烯	75-01.4	0.12	0.43	1.2	4.3
	26	苯	71-43-2	1	4	10	40
V	27	氯苯	108-90-7	68	270	200	1000
•	28	1,2-二氯苯	95-50-1	560	560	560	560
	29	1,4-二氯苯	106-46-7	5.6	20	56	200
	30	乙苯	100-41-4	7.2	Zy, 28	72	280
	31	苯乙烯、	100-42-5	1290	1290	1290	1290
	32	甲苯	108-88-3	1200	1200	1200	1200
	33	间二甲苯+对二甲苯	108-38-3, 106-42-3	163	570	500	570
	34	77年苯	95-47-6	. D. 222	640	640	640
	半挥发力	生有机物	<i>(</i>	7/53			
	35	硝基苯	98-95-3	34	76	190/	760
	36/	苯胺	62-53-33	92	260	211	663
	\\37	2-氯酚	62 /53 (3	92	260	211	663
1	T 38	苯并[a]蒽	56-55-3	5.5	15	55	151
	39	苯并[a]芘	50-32-8	0.55	1.5	5.5	15
	40	苯并[b]荧蒽 🎢	205-99-2	5.5	15/	55	151
	41	苯并[k]荧蒽	207-08-9	55	151	550	1500
	42	A A	218-01-9	490	1293	4900	12900
	43	二苯并[a,h]蒽	53-70-3	0.55	1.5	5.5	15 x/// '
	44	茚并[1,2,3 cd]芘	193-39-5	5.5	15	55	151
	45		91-20-3	25-17	70	255	700-

(6)生态环境

污水处理厂位于"晋江西部城镇 业生态环境,辅助生态功能为饮用水源保护、交通干 功能小区主导生态功能为城镇 **《**线市域景观、历史古迹旅游。

1.4.2 污染物排放标准

(1)废水排放标准

项目设计一期规模为 $2.0 \times 10^4 \text{m}^3/\text{d}$,远期规模为 $4.0 \times 10^4 \text{m}^3/\text{d}$,尾水处理后排海 根据本污水处理厂设计出水水质,要满足《城镇污水处理厂污染物排放标准 18918-2002) 级A标准, 其中F-指标小于10mg/L, 详见见表1.4-9。

表1.4-9 项目排水执行标准一览表(日均值)

				911 9 94	V 1 V 1 V	· -		· • - /		Vr /.	
/ 项目	рН	COD_{Cr}	BOD ₅	SS	色度	氨氮	总氮	总磷	F	粪大肠 杆菌群	硫化物
大	无量纲	mg/L	mg/L	mg/L	稀释 倍数	mg/L	mg/L	mg/L	mg/L	个/L	mg/L
GB 18918 一级 A 标准	6~9	≤50	≥10	≤10	30	≤5(8)	≤15	≤0.5	≤10	≤10 ³	1.0

总则

(2)大气污染物排放控制标准

恶臭污染物排放旅行《城镇污水处理厂污染物排放标准》(GB18918-2002)二级标准并参照执行《恶臭(异味)污染物排放标准》(DB31/1025-2016)标准(上海市地标)之产者,具体要求见表1.4-10。

表	1.4-10	恶臭污染物排放标准一	·览表
---	--------	------------	-----

	, 1(//2)	Ç 1.T	10 /L	<u>シア():</u>	7 123,		שניטע		X.Y		
	1			Zs).				14	0/2-	厂区最	_
ris/				排放速	率*		厂界	监控浓度	限值	高体积	ŗ
少 / 卫	排放标准		*	57						浓度	
1/2		Ŕ	<u> </u>	硫化	氢	臭气浓度	氨	硫化氢	臭气浓度	甲烷	
		mg/m³	kg/h	mg/m ³	kg/h	(无量纲)	(mg/m^3)	(mg/m^3)	(无量纲)	(%)	
	《城镇污水处理厂污染物	(%)'									
	排放标准》 1					1st	2				1
1	(GB18918-2002)、《恶臭(异	30	1	5	0.1	1000	1.0	0.06	20	1	١
	味)污染物排放标准》					3,1					
	(DB31/1025-2016)				8	<u></u>					_

注:排放速率限值对应为 15m 高排气筒情况

(3)噪声排放控制标准

夜1.4-W 建巩旭二切介哚尸似但一见衣	表1.4-11	建筑施工场界噪声限位	直一览表
----------------------	---------	------------	------

	1115	噪声限值 dB(A)	
	昼间	发间	
	70	55	X
	表1.4-12 工业企	业厂界环境噪声排放限值一览	表
序号	人界外声环境功能区类	列	夜间 dB(A)
1	3 类	65	55

(4)固体废物控制标准

一般工业固废的处置和贮存执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020); 危险废物执行《危险废物鉴别标准通则》(GB5085.7-2019)和《危险废物贮存污染控制标准》(GB18597-2023)。生活垃圾转运站等执行《生活垃圾填埋场污染控制标准》(GB16889-2008)的要求。

1.4.3 其他标准

- (1)《工业企业设计卫生标准》(GBZ1-2010)(
- (2)《工作场所有害因素职业接触限值》(GBZ2.1-2019);
- (3) 危险化学品重大危险源辨识》(GB18218-2018)
- (A)《福建省地方标准—行业用水定额》(DB35/T772-2023)。

1.5 评价工作等级

1.5.1 大气环境评价工作等级

恶臭面

根据本项目可能产生的大气污染主要来自于污水处理和污泥处理构筑物。主要污染因子为 NH₃和 H₂S 等,按照《环境影响评价技术导则 大气环境》(HJ2.2-2018)规定,分别计算每一种污染物的最大地面浓度占标率 Pi(第 i 个污染物)及第 i 污染物的地面浓度达标准限值 10%时所对应的最远距离 D_{10%},其中 Pi 定义为:

$$P_{i} = \frac{C_{i}}{C_{0i}} \times 100\% \tag{1.5-1}$$

·阿里斯·拉斯·特

 C_i : 采用AERSCREEN估算模型计算出的第i类污染物的最大地面浓度, mg/m^3 ;

 C_{0i} :第i类污染物的环境空气质量标准, mg/m^3 。一般选用GB3095中1h平均质量浓度的二级浓度限值;该标准中未包含的污染物参照HJ2-2018附录D中浓度限值。

大气评价等级判定依据见表 1.5-1, 估算模型参数见表 1.5-2, 预测结果见表 1.5-3。

表 1.5-1 评价工作等级一览表 评价工作等级 评价工作等级判据 一级 P_{max}≥10% 二级 $1\% \le P_{\text{max}} < 10\%$ $P_{\text{max}} < \overline{1\%}$ 表 1/5-2 估算模型参数 览表 参数 取值 城市/农村选项 城市/农村 农村 人口数(城市选项时) 最高环境温度/°C 39.6 最低环境温度/℃ 0.1 正午反照率 0.14 地面扇区 0,150 **BOWEN** 水面 120~360° 土地 **0.000**1 粗糙度 利用 正午反照率 0.2075城市(AERMET 类型 地面扇区 地表类型:城镇 **BOWEN** 0.75 0~120° 外围) 0.4 区域湿度条件 潮湿气候 考虑地形 是 是否考虑地形 地形数据分辨率 90m 是 海岸线距离/m 是否考虑海岸线熏烟 1548 海岸线方向/0 180 表 1.5-3 大气评价等级估算结果--览表 污染物 最大占标率(%) D10%最远姆(m) - 预处理 NH_3 0.08 段排气 H_2S 0.11筒 NH_3 0.19 污泥处 理段排 0.31 气筒

XIV TEL

0.54

			<u> </u>	Ý.
源		H_2S	0.78	/
	A ² O 池	NH ₃	4.98	/
	A-O (E	H ₂ S	5.18	/
	污泥处×	NH ₃	1.68	
	理	H_2S	2.58	1 1/10

从估算结果可以看出,恶臭面源无组织排放的 H₂S 占标率最大为 5.18% 10%。项目大气评价等级确定为二级。

1.5.2 地表水环境

本项目污水处理达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级 A标准后,污水与泉荣远东污水、并管深海排放。配套的管道工程及其污水排放对海域水环境的影响将另外开展海洋环境影响评价,对地表水环境的影响仅作分析,不划分评价等级。

1.5.3 声环境

本项目所在区域现状属《声环境质量标准》(GB3096-2008)规定的 3 类标准适用区,项目建设的后声压级有一定程度提高,周边均为福建省集成电路工业园区(工业园),受影响人口数量少,根据《环境影响评价技术导则 声环境》(HJ2.4-2021)中噪声评价工作等级划分原则(见表 1.5-4),声环境影响评价工作等级定为三级。

表 1.5-4 拟建项目声环境影响评价工作等级划分原则一览表

序号	等级分类	等级划分基本原则
		评价范围内有适用于GB3096规定的0类声环境功能区域,以及对噪声有特别限
1	一级	制要求的保护区等敏感目标,或建设项目建设前后评价范围内敏感目标噪声级增,
		高量达 5dB(A)以上(不含 5dB(A)),或受影响人口数量显著增多的情况
		建设项目所处的声环境功能区为 GB3096 规定的1类、2 类地区,或建设项目建
2		设前后评价范围内敏感目标噪声级增高量达 3dB(A)~5dB(A)(含 5dB(A))、或受
		噪声影响人口数量增加较多的情况
		建设项目所处的声环境功能区为 GB3096 规定的 3 类、4 类地区, 或建设项目建
3	三级	设前后评价范围内敏感目标保声级增高量在3dB(A)以下(不含3dB(A)),且受影
		响人口数量变化不大的情况

1.5.4 地下水评价工作等级

本项目为工业废水集中处理项目,属于《环境影响评价技术导则 地下水环境》 (HJ610-2016)中划分的 I 类建设项目。项目所在区域属于工业区,地下水下游为海域。 所在区域不属于集中式饮用水源、地下水环境保护区、分散式饮用水源、水源保护区 以外的补给径流区等地下水敏感或较敏感区域,地下水环境敏感程度为不敏感,根据 《环境影响评价技术导则 地下水环境》(HJ610-2016)规定,本项目的地下水评价等级 确定为二级,见表 1.5-5。

表 1.5-5 地下水评价工作等级一览表

项目类别 球處敏感程度	I类项目	II 类项目	III 类项目
敏感	W	- «	_ =
· 较敏感	- 1117	= "	× =
不敏感	37 =	=	Ξ

XII THE

1.5.5 土壤评价工作等级

本项目为工业废水集中处理项目,属于《环境影响评价技术导则 土壤环境》 (HJ964-2018)附录 A 中划分的II类建设项目。项目位于福建省集成电路工业园区(工业园) 内,周边均为工业用地,无土壤环境敏感目标,敏感程度为不敏感;项目占地面积为 5hm²<5.2km²(51919.11m²)<50hm²,占地规模为中型,根据评价等级,根据污染影响型 评价工作等级划分表,本项目土壤评价等级为三级。评价等级划分依据见表 1.5-6。

表 1.5-6	评价范围主要环境保护目标一览表	
---------	-----------------	--

//										
-1	占地规模	×	\- I			II			III	
V -	评价工作等级 敏感程度		中	小	大	中	小	大	中	小
	敏感 人	一级	一级	一级	二级	二级	二级	三级	三级	三级
	较敏感	一级	一级	二级	二级	经级	三级	三级	三级	— <u> </u>
	不敏感 🕢 🔪	一级	二级	二级	二级	兰级	三级	三级	_	
-	不敏感 🐼 🕻	一级	二级	二级	二级	177	二级	二级	三级	_

注:"—"表示可不开展土壤环境影响评价工作。

1.5.6 生态评价工作等级

本项和位于福建省集成电路工业园区(本业园)内,项目用地属于工业用地,符合生态环境分区管控要求,项目所在地无自然历史遗产、自然保护区、风景名胜区和水源保护区等生态敏感区,评价区属于《环境影响评价技术导则 生态环境》(HJ19-2022)中划分的一般区域,故生态评价工作定为二级。

1.5.7 环境风险评价工作等级

本项目位于福建省集成电路工业园区(工业园)内,不涉及环境敏感地区,不存在重大危险源。根据《建设项目环境风险评价技术导则》(HJ169-2018)的分级判定依据和各环境要素的环境敏感程度,确定大气环境风险潜势为II,评价工作等级为三级、地下水环境风险潜势为I,可开展简单分析。确定本建设项目的环境风险潜势划分为II,评价工作等级为三级。

1.6 评价范围及环境保护目标分布

1.6.1 评价范围

大气:评价区域全年最多风向为 NE,大气评价范围为以厂区中心为原点,半径为 2.5km 的矩形区域(25km²)。

噪声: 评价范围为项目厂界周边外延 200m 范围内。声环境保护目标以厂界周边环境噪声达到相应功能要求为主。

承境风险: 距离项目边界外 3km 的包络范围内,并兼顾工程对敏感自标的影响; 地表水风险评价范围同地表水评价范围一致; 地下水风险评价范围两地下水评价范围 一致。

地下水: 根据区域水文地质条件及评价区地下水补给径流排泄特征,划定项目周

边约 10km²(小于 20km²)的评价范围。

土壤:评价范围为厂区及厂区外延 0.05km 范围。

1.6.2 环境保护目标

大學 经调查 在本次确定的评价区域的陆域范围内无珍稀野生动植物资源, 文物保护单位。据项目性质和周围环境特征调查,确定评价范围内的环境保护目标,

	1.6.2 环境(保护目标						1115
	经调查	在本次在	确定的评价	区域的陆坝	或范围内无	珍稀野生动	J植物资源,	也无重点
	文物保护	位。据项	目性质和周	围环境特征	正调查,确	定评价范围	内的环境	呆护目标,
	见图 1.6-1	和表 1.6-1。		The same of the sa			D.	
	<u> </u>	:	表 1.6-1 评	价范围主要	要环境保护	目标一览表	<u>.</u>	
EXF. THE REAL PROPERTY OF THE PARTY OF THE P	序号	名称	相对厂业方位	相对厂界 距离/m	环境特征 描述	保护对象	保护内容	环境功能 区域
ALKID!	1	白沙村	上 新侧	998.13	3032 人			
	2	碧江小学	东南侧	913.96	- x	VL.		
	3	仁和里尔	东北侧	495.34	_ xi)	7~		
	4	永湖村 (永坑、后 湖)	北侧	2710	2107人		环境空气 (边长 5km	
	5	东兴新村	西北侧	1058	_	12 13	范围两人	一业口
	××-76	东石镇区	北侧	2030	136212 人	居民	风险(边	二类区
Ý	7	晋江致远 中学	东南侧	864.21	3000人		界 3km 范 围内)	
	8	檗谷村	东北侧	2040	3875 人	DAY		
	9	埔头村	东北侧	1660	948 人	1/2°		
	10	岑兜 🔨	东侧	1360	_			The state of the s
	11	东石麦园	东侧	1810	1964	,		XX)
	12	凯旋童号	东侧	2310	- -			
	13	安海湾海域	西侧	2470		安海湾	弯水质	四类功能 区
	14	厂界及四 周	/		/	声玑	不境 人	3 类区
X	15	厂区地下 水下游	/	A A A	/	地下力	火水质	III 类

1.7 评价内容、重点

1.7.1 评价内容

本次评价的主要目的是分析本项目产生的主要环境问题,确定影响的范围和程度 制定避免或减轻污染的防治对策,为本项目的建设和环境管理工作提供依据

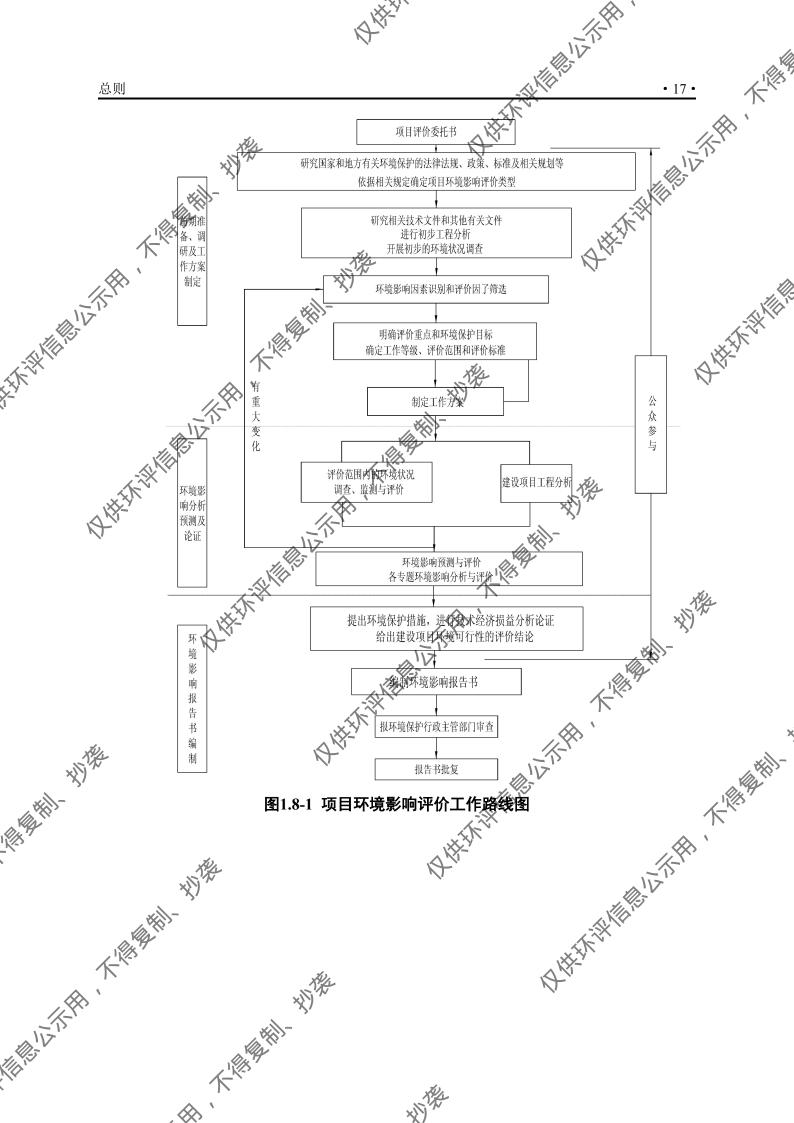
- (1)通过调查和收集相关环境监测资料,掌握评价区内的环境质量状况,功能要求 结合工程分析和类比,分析建设项目的污染源排放情况及其特征, 预测可能对周围环境影响的程度和范围。
 - (2)结合环境影响预测评价结论,论证项目的工艺方案和所采取的环保措施的可行

性,提出进一步控制污染,减缓和消除不利影响的对策措施

- (3)根据建设项目,周围环境空气、地表水环境、一环境等的影响预测评价结果, 结合产业政策、相关规定以及本项目所需环境条件的分析,判定项目的建设和生产的
- (4)通过工程分析以及对采用的环境保护措施的环境经济效益分析,并提出"污染物达标排放和总量控制目标"以及进步提高清洁生产水平的对策建议。 (5)通过环境影响评价,为建设单位提供工程设计、施工管理、生产运营等的环境
- 为环保部门提供对本项目进行环境管理和审批的科学依据。

- (1)收集生产项目的生产工艺、污染物种类以及排放源强资料,结合相关类比数据, 掌握其生产工艺特点和污染源排放情况,为评价工作提供可靠的依据。
- (2)分析废水排放规划一级废水污染物、大气污染物的排放现状,分析本项目废水、 废气排放方案的可行性。
- (3)在污染控制的基础上,开展环境影响预测,分析本项目拟采取的环保措施、选 方的4. 大規模制 北和拟建厂区平面布置的环境合理性,为项目的建设提供可行的依据和建议。

1.8 评价技术路线


AND THE REAL PROPERTY OF THE PERSON OF THE P

本项目主要环评技术路线见图 1.8-1。

大學教育 大學教育 人名斯特斯 AHAN KIRAN

大" 根据 "

XIII

2 项目工程概况与工程分析

2.1 工程概况

2.1.1 工程基本情况

大學 福建省集成电路工业园污水处理厂总规模为 40000m³/d, 拟分两期建设。 一期工程,建设规模为 20000m³/d(部分土建按远期总规模建设。 一期工程处理设施等内容,不含深海排放工程。项目基本情况见表

表 2.1 项目基本情况一览表

V.			
	序号	名 称	简 要 内 容
	1	项目名称	福建省集成电路工业园污水处理厂项目一期工程
	2	建设单位	福建省晋江圳源环境科技有限责任公司
•	3	建设性质	x 新建
	4	所属行业	D-4620、污水处理及其再生利用
	5	总投资	28400.69 万元
	6	建设地点	一 工市东石镇郭岑村
	7	占地面积	49368.0m ²
-	1481	建设规模	本次一期工程为 20000m³/d(部分土建按照远期规模建设), 两期总规模为 40000m³/d
K	9	项目组成	项目由格栅、调节池及事故池、前置高效沉淀池、水解酸化及改良 A ² O 生物池 芬顿系统、精密过滤器及接触消毒池、尾水排海泵站、厂内污水泵站、污泥浓缩池、污泥脱水机房 冷 符合生产用房、芬顿加药储罐 区、综合楼、大门及门卫等附属工程组成。
	10	污水处理人艺	细格栅及调节池—前置高效沉淀池—水解酸化及改良 A ² O 生物池—二沉池—二次沉淀池—芬顿系统—精密过滤器—接触消毒池及巴氏计量槽)—达标排放。除磷采用生物除磷辅以化学除磷工艺,消毒采用次氯酸钠消毒工艺,污泥处理采用板框压滤脱水
	11	二次污染环保工程	恶臭气体治理措施、固废暂存设施
	12	劳动定员	劳动定员 28 人
	13	工作制度	年工作月365 天, 每天工作24 小时, 评价按8760h/a 计
_	14	服务范围	福建省集成电路工业园规划范围,总面积为771.53 公顷。
火	15	设计出水指标	《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 排放标准
S'~_	16	尾水去向	处理达标后依托现有的区域污水厂深海排放工程引至晋江金井镇围头角 外南部海域进行深海排放(本项月工程不含深海排放)

2.1.2 工程组成

本项目具体组成部分及主要构筑物详见表 2.2、各构筑物主要设备见表 2.3。

项目组成及主要构筑物建设内容一览表 表 2.2

	项目组	L成	建设内容	主要参	数	备注
本	细糖消事池	1 7	1座钢筋混凝土结构, 分2格,内设格栅机、 输送机、提升泵等	事故池尺寸: 27.3m×56 调节池尺寸: 34.0m×29. 26.1m×7.6m,设计流量: 停留时间: 6.0h	9m×7.6m+19.3m×	
工程 (调 节)	及进 水在		1座,室内安裝在线 pH/T、CODcx NH ₃ -N、 TN/TP、氟离子在线监	尺寸: L×B=6.5m×4.5m	4	设备分期 安装,一期 规模为2万

図							•	
別畫 別畫 別畫 八向尺寸(字稿) (188-2.8m×2.8m, 有效 186					K	7		
別畫 別畫 別畫 八向尺寸(字稿) (188-2.8m×2.8m, 有效 186		项目	日丁程相	延况 与 丁:	程分析		• 20 •	
「				71.71 7 1.				
京文 新城市 上地 与			八王	混合池	混凝剂 PAC 与污水 混合池	水深 7.0m 混合时间:2.32min		(大學)
定 2 格		主体	高效沉淀	发	絮凝剂 PAM 与污水 混合池, 2 格钢筋混凝 土池	几何尺寸(单格): L×B=4m×4m,有效水深 7.0m 絮凝时间: 12min 设计流量: Qave=833.33m³/h	模(2万 m³	
酸化池 是上结构池 报上结构池 报刊流量》 Qavg=833.3m³/h (单格流量 均按一期规 4/20 上 4 物池 光		上柱(物)	•	沉淀池	泥水分离池 2 格钢筋混凝土池	深 6.80m 设计流量: Qave=833.33m³/h 斜管区面积: 56.98m² 斜管区负荷: 9.0m/h		
及 A ² Q + 地下式钢筋混凝土 (2 万 m ² / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /			水解	ファルナ	1座(2格)钢筋混	停留时间: 8.0h 数量: 1 座 尺寸: L×B=18m×54m, 有效水深 6.8m	,	A HEER
2 座半地下美鋼筋混凝土建物 1 座半地下美鋼筋混凝土地 2 座 地 大 美	*	主体 工程 (生 化)	及	生物池	半地下式钢筋混凝土 池, 1座, 由厌氧池、	416.7m h) 平面及寸: 43m×54m 有效水深: 8.0m 水力总停留时间: HRT=19.5h (其中厌氧各 1.5h, 一级缺氧 6.0h) 一级好 氧 7h, 二级缺氧 3h, 二级好氧 2h) 污泥浓度: 4.0g/L、总污泥鞍 19.1d	均按一期规 模(2万 m ³	
及污泥 泵池			池、郡 水井 及 泥泵	二沉池	凝土结构 功能:混合液在二沉池 内经生物絮凝沉淀进 行固液分离底泥回流	几何尺寸: 直径 φ 25ml, -池深 5.8m 池型: 周边进水周边出水辐流式沉淀池 设计流量: Qave=416.67m³/h 表面负荷: qave=0.85m³/m²·h 池边水深: 3.3m	均按一期规 模(2 万 m³	
混合池 混合池 混合池 2格钢筋混凝土地			方	及污泥		设计流量: Q=833.33m³/h		
高效 沉淀	10/4	K.		混合池	混合池 人	几何尺寸(单格):L×B=2.4m×2.4m,有效 水深 4.85m 混合时间:4.0min 设计流量:Qave=833.33m³ /h		**************************************
水深 5.75m 水深 5.75m 设计流量: Qave=833.33m³/h 投資	*}) 	主体	高效 沉淀	絮凝池	混合池, 2 格钢筋混凝	水深 5.9m 絮凝时间: 21.2min 设计流量: Qave=833.33m³/h	均按一期规 模(2 万 m ³ /d)建成	K-100
中间提 中间提 1 座半地下钢筋混凝土 九何尺寸: L×B=6.0m×10.00m 均按一期规 有效水深: 4.45m 读(2 万 m³ / d)建成 大顿丘 大顿丘		工程 (深 度处		沉淀地	2 格钢筋混凝土池	水深 5.75m 设计流量: Qave=833.33m³/h 斜管区面积: 111m²	No. 15-15	
芬顿 芬顿反 上建和设备 均按一期规 点器单 元 元 元 元 元	•	个	建 升 泵	升泵房	4+ 1/2	有效水深: 4.45m	均按一期规 模(2 万 m³ /d)建成	
WW A T T				应器单	钢筋混凝土结构	尺寸: 13.6×6.7m	均按一期规	

XIX

						•
				1	AHEN STATES	
	项目	1工程欄	既况与工	程分析	-\$\tau^{\tau}	
				钢砼结构,玻璃钢防腐	尺寸: 18.95×14.20×2.0m	/d)建成 土建和设备
			稳定池	七布九油 1座,分2格	有效水深: 6.0m 有效容积: 1278m³ 停留时间: 1.5h	均按一期规 模(2万 m³) /d)建成
			接触池	预留活性炭接触池; 邻	几何尺寸(单枚)·I×R=1.7m×1.7m 右於	-SK
		1	39	砼结构,2格	设计流量: Qave=833.33m³/h 几何尺寸(单格): L×B=1.8m×1.8m, 有效	
		后置	混合池	钢砼结构, 2格 💥	水深 6.8m 混合时间: 0.96min 设计流量: Qave=833.33m³/h	
影響	1/2-XX	高效 沉淀	絮凝池	钢砼结构,2格	几何尺寸(单格): L×B=3.9m×3.9m, 有效水深 6.95m 絮凝时间: 15.0min	
		池			设计流量: Qave=833.33m³/h 几何尺寸(单格): L×B=9m×9m, 有效水	
			沉淀池	钢砼结构, 2格	深 6.80m 设计流量: Qave≠833.33m³/h 斜管区面积: 56.98m²	Ø,
			精密计	*	斜管区负荷 9.0m/h	
		精密过滤	沙滤器	2 套	设计流量: Qmax=1000m ³ /h 设计流量: Qave=设计流量: Q=2041.67m3/h,	
		接触消毒	接触消毒池	钢砼结构, 1座(2组)	O-1020 8m3/h (单枚)	合建, 土 建按总规 模(4万 m ³
4	1/X	池、出 水在		//-	有效水深: 4.0m 设计规模: Q=567.13L/s	(4 / m / d) 建成, (d) 建成, (设备分期
,	V	线监测室	巴氏计 量渠道	钢砼结构,与接触消毒 池分建	计量范围: 0.1~1.1m³/s 喉宽: 0.45m	安装,一期规模为2万
		及尾水泵房	尾水泵	钢砼结构	设计渠宽: 1.2m 水质监测间 L×B×H=5:90m×4.40m×5.0m 集水池 L×B×H=17.0m×4.4m×2.50m	m³/d 配置
		1/3	站	1942 50 14	水泵房 L×B×H=17.0m×6.50m×7.20m 直 径: Φ16m	XII
		沄泥:	浓缩池	】 1 地上式钢筋混凝土水	一期设计温息, 10 吨 络干泥/干	土建和设备 均接一期规
		17 1/61	化加	池座	固体负荷: 50kg/ (m2.d) 迷泥含水率: 99.2%	模(2万 m³ /d)建成
					子面尺寸: L×B=41.2m×24.5m, 2 层, 总高	土建按 4
, A		12 VI W	وخر ما دا د	1 座地上式建筑物,以能:经过脱水后,产出	设计参数: 污泥处理量: 10tDS 干泥/d(~期公告)	万 m ³ /d 配 置,设备一
×//-		行犯规	艺水机房	污泥含水率<60%的 干泥饼	进泥含水率: 约 98% 泥饼含水率: ≤60%	期按照 2 万 m³/d 配
A THIS	辅助 工程				PAM 投加量: 4~5%% 工作时间: 12h/d	套 个
>			XV2		平面尺寸: L×B=23.15×15.8m (加药间), 房高 5.0m	土建
			XXX		PAC 投加量、50mg/L(总计)(按 Al ₃ O ₂ 计), 投加浓度为 10%。 PAC(除氟)投加量: 250mg/L, 投加浓度为	接总规模 (4.0万 m³/d)
			- 药间	1 座框架结构一层厂房	100/	建成,设备 分期安装,
	人	57		<i>d</i> .		一期规模按 2.0 万 m ³ /d
	1			W)	为 0.1%。 PAM(芬顿高效)投加量: 1mg/L, 投加浓度	配置
				, 450	为 0.1%。	

XIX

-//-	1上性%儿一工	/1土刀 /川		
		XV.	氢氧化钠(前置高效)投加量:30mg/L,投加浓度32%。 碳源投加量:105mg/L(按乙酸钠计),投	·银根据。1275年
	亦取力沟流社	ST.	加浓度 20% 次氯酸钠投加量: 10mg/L, 投加浓度 10%	
	变配电间及鼓 风机房	1座框架结构,单层	平面尺寸:L×B==(15.60m+13.00m)×15.80m	-XX
	茶顿加药储罐 区	钢结构	平面尺寸: L×B=16.8m×15.80m 芬顿系统使用药剂主要为浓硫酸、硫酸或 铁、双氧水、液碱; 配套集水坑	
The state of the s		一期采用 2 套除臭系统, 1#除臭系统用于处理组格栅事校池及调		NHIA IN
	除臭系统	节池、 的 置高效沉淀 池、水解酸化及 A2O 生物池(预缺氧、厌氧、 缺氧段)产生的臭气;	1#除臭系统设计风量 37000m³/h 2#除臭系统设计风量 22000m³/h 除臭工艺: 生物滤池	A HEEV
	NV ST	②#除臭系统用于处理 污泥浓缩池、污泥脱水 机房产生的臭气	**************************************	
	供电	厂外市政管网接入 厂外市政电网接入	依托园区市政	/
公用工程	综合楼	1座,框架结构	尺寸: 47m×15.20m×12.85m, 建筑面积 2143.2m ²	
4	门卫	1座,框架结构 一期采用 ②套除臭系	建筑面积 20m²	
二污环措施	治理 统	统,1#除臭系统用于处理细格栅事故池及调节池、前置高效沉淀地、水解酸化及A2O生物池(预缺氧、厌氧、	1#除臭系统设计风量 37000m³/h 2#除臭系统设计风量 22000m³/h 除臭工艺: 生物滤池经处理后分别由 2 根不 低于 15m 高排气筒排放	·#//-
XX.	固废 污泥 处置 格栅、生 活垃圾	7.14t/d 6.785t/d	位于综合楼一层,日产日清 <u>,外运垃圾焚烧厂处置</u> 近置暂存收集设施和场所,定期交环卫部门 处置	/ ×»-
	机械噪声	/	用低噪声设备、高噪声设备采用减振、隔声或消声等措施	
	公用工程 (1)供电 ※	表 2.22 项目	主要设备一览表《略》	
	X)) '	i划分本污水处理厂)	为二级负荷,由两路 10kV 电源供电	》用一备,
	断路器合闸运 (2)给排水		电,由另一路电源负担全部负荷。	."
大	` '	工业园区污水处理厂	一工程的生活用水及消防用 水 引自厂外	市政给水
) 管网		活及消防使用。	→ (工用) 上 (日 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	14 EX 24 17
		THE STATE OF THE S		

2.1.3 公用工程

·利用局心不行用。 项目运营自身产生废水经厂区废水收集管道进入调节池, 达标后深海排放。

2.1.4 附属工程

(1)供、配电系统

本工程用电设备共计 436 套,工作容量约 1993kW,用电负荷等级为之级

工程拟新建变配电间 1 座,内设高压配电室、低压配电室和 PLO 控制室;高 电室内新设高压配电柜,双列布置。低压配电室内新设低压配电柜和 1600kVA 干 压器 2 组(同时工作,为热备),其单台变压器负荷率约 70%。低压配电室 内预留低压配电柜安装位置约 24 台、预留 PLC 柜安装位置 4 台。

变配电间及臭氧制备间、鼓风机房各新建低压配的间一座,新设低压柜,PLC 柜 等, 电源引自变压器低压侧。

(2)管道设计

管材心工艺污水管道、空气管道、超越管道、外部压力管道、污泥管道及放空管 道与构筑物连接部分采用钢管; 厂内给水管道采用给水 PE 管; 排水管道大口径采用 的筋砼排水管,小口径采用塑料排水管;加药管道采用给水 PE 管道;各建筑物排水 管道采用排 PVC 管道。

管道防腐: 所有钢管内表面做内防腐层, 外表面采用石油沥青及环氧煤沥青涂料 外防腐层。厂内钢筋砼污水管内壁做氰凝防腐。

管道基础: 所有排水钢筋砼管按国标图集做领

(3) 厂房通风

高、低压配电间等电气设备用房设置事故排风兼做平时通风的机械通风系统,通 风换气量按换气次数 15 次/h 计算(满足排热要求),通风机选用外墙轴流风机,通过 门窗补风。风机与烟感连锁,火灾关闭,灭火后开启风机排除有害气体。

加药间设置机械排风自然进风的通风系统,通风换气量按换气次数8次/h计算, 通风机选用外墙防腐轴流风机,通过门窗补风。

鼓风机房、污泥脱水机房等均设计了机械排风自然进风的通风系统,鼓风机房通 风换气量按换气次数 8 次/h 计算,污泥脱水机房通风换气量按换气次数 12 次/h 计算, 通风机选用外墙轴流风机,通过门窗补风。

2.2 工程平面布置及高程设计

2.2.1 项目总图布置方案

由于本项目征地红线不规则,导致场地有效利用率较低,考虑的置高效沉淀池, 水解酸化及 A2O 生物池, 二流池、配水井及污泥泵房, 后置高效沉淀池, 污泥浓缩

池构筑物土建和设备按照一期和二期分别建设,其余建构筑物土建均按照 4.0×10⁴m³/d 规模一次性建设,构筑物分两格,设备分期建设。

厂内道路采用平直网状街区型布置。主干道宽度均为6米,次干道宽度4米。道路结构均采用公路型道路,其面层采用沥青路面,道路横坡均为2%。生产区道路成环形布置、便捷地联系各建、构筑物,并布置必要的回车场地。流畅方便的车行道路系统,能充分满足全厂的物资运输及消防安全要求。人行小道宽2米,采用透水砖8cm,中粗砂3cm,级配碎石15cm。

项目厂区根据功能划分为3个功能区预处理区、二级生物处理区、深度处理区、 污泥处理区以及生活办公区。具体功能及布置如下:

预处理区:主要有事故池及调节池,前置高效沉淀池,水解酸化池及污泥泵池,根据污水管网来水方位,布置在厂区北侧。

二级生物处理区: 主要有 A2/O 生物池、二流池、中间提升泵房,布置在厂区中部; 南侧为一期,北侧为二期预留;另此区域还布置着一些生

产辅助设施如:脱水机房、加药间。

深度处理区:主要有芬顿系统 接触消毒池等。另此区域还布置着一些生产辅助 设施如:加药间、变配电间、臭氧制备车间。

污泥处理区:主要有污泥脱水机房、污泥储存间、污泥浓缩池,布置在厂区东北侧,配有单独的除臭系统。

生活办公区, 在要有综合楼, 门卫及厂前区, 区主入口设置于此, 综合楼前设广场。

该布置方案功能分区明确, 互不干扰; 且污泥区域和恶臭气体处理排放区域距综合办公楼较远, 避免了恶臭气体排放对生活办公区的影响。项目进出水管线顺畅, 避免了迂回曲折, 污水处理厂出水与规划湿地相邻, 便于后期运行时管理人员巡回检查, 且预留发展用地规整。污泥区域离厂前区及厂区边界有一定距离, 有利于厂前区卫生环境控制。

厂区总平面布置示意图见图 2.1。

2.2.2 高程设计

本工程拟建场地为为晋江市东石镇郭岑村。根据《福建省集成电路工业园污水处理厂防洪评价报告报批稿》,本项目厂区现状地面高程定为 3.6m,满足设计潮位高程,满足场地防洪的排涝要求。

本项目尾水处理达标后通过排海压力管道,然后入海湾。为节约能耗,水处理系统高程设计中考虑三次提升,调节池一次提升后,重力流经强化级处理构筑物、生物池、二沉池、后置高效沉淀池等各处理构筑物进行处理,经中间泵房二次提升至 V

O KATE

XIII XX

型滤池、重力流经臭氧接触池后处理系统、曝气生物滤池、 房压力管道排海。

本工程污水处理高程设计详见图 2.2。

2.3 工艺方案

2.3.1 处理规模及收水范围

项目收水范围为福建省集成电路工业园规划范围内工业废水,范围北至伞都西路, 西至安海湾,东至仁和路,总面积为771.53公顷,收水范围详见图2.1。 福建省集成电路工业园污水厂总设计处理规模为40000m³/d,拟分两期建设,其中一期 设计规模为 20000m³/d, 水次评价内容为一期工程。

根据规划工业用地主要位于规划区西部,用地面积约为 187.23 公顷,废水量,因 此本工一期工程设计处理量 4万 m3/d 基本合理。

2.3.2 污水处理厂进出水水质

(1) 业园产业定位及废水类别

良据福建省集成电路工业园区规划最新修编确定的产业定位,工业园发展产业为 导体全产业链、上下游及相关配套、新一代信息技术产业、数字健康产业; 工业园 产业指引调整为以数字健康为大方向,发展医用同位素制备装置、核医疗装备制造、 高端核探测检测、核辐照装备制造应用及高性能医疗器械等相关产业。

根据调查,半导体产业及相关配套产业生产过程排放废水主要有酸碱废水、含氟 废水、含氨废水、有机废水和含重金属废水。其中含酸碱废水主要是在半导体设备及 零部件清洗、冲洗过程产生,含氟废水主要来源于氟化氢、氟化铵等药剂在设备氧化、 刻蚀过程产生,有机废水是在制造封装的各个环节使用有机溶剂后清洗产生,含重金 属废水则是在各个使用酸碱或清洗的环节均会产生。半导体产业及相关配套产业水质 较为复杂,园区各排污单位应根据产污类别进行预处理,确保外排废水满足《电子工 方可排入园区管网进入本 型水污染物排放标准》(GB39731-2020)中间接排放标准后, 污水处理厂。园区内各排污企业建议执行排放标准见表 2.3%

根据调查,园区指引产业核医疗装备制造、高端核探测检测、核辐照装备制造应 用及高性能医疗器械等相关产业会产生放射性废水、企业废水排放口排放废水应满足 《电离辐射防护与辐射源安全基本标准》GB18871-2002。

3. 园区内废水排污企业执行标准—监表

	- 1 2.			シピーペー	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
W.	7 污染物项目		GB39731-2020 限值		污染物排放监控位置
IN/S	pН		6~9		N.X.
大,	$COD_{Cr}(mg/L) \leq$	XVL	500	<	企业总排口
>	$SS(mg/L) \le$	X	400		V

	D. W. T. W.	-15-EA '
项目工程概况与工程分析	-\(\sqrt{\sq}}}}}}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\signtimes\sqrt{\sqrt{\sq}\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	· 26 ·
————————————————————————————————————	20	
	200	AHHARIH KILLING
氨氮(mg\L)≤	45	AIV
总氮(mg/L)≤	70	1115
∭ (mg/L)≤	8.0	-31/17
阴离子表面活性(LAS)(mg/L)≤	20	
总氰化物(mg/L)≤	1.0	N. N
硫化物*(mg/L)≤	1.0	4
氟化物(mg/L)≤	20	
总铜(mg/L)≤	2.0	
总锌*(mg/L)≤	1.5	
总铅(mg/L)≤」以为"	0.2	
总镉*(mg/L)≤\	0.05	<
总铬*(mg/L)≤	1.0,17	
六价铬*(mg/L)≤	0.2	车间或生产设施排放口
	0.5	
编(mg/L)≤	0.5	
总银(mg/L)≤	0.3	

①设计进水水质

根据《福建省集成电路工业园污水处理厂项目一期工程 分析,工程各项指标进水水质设计见表 2.4。

表 2.4 工程设计进水指标一览表

项目	PH	COD _{Cr} (mg/L)	SS (mg/L)	轰氮 (mg/L)	总氮 (mg/L)	总磷 (mg/L)	F- (mg/L)	Cl- (mg/L)	TDS (mg/L)
进水水质	6.5~9.5	500	400	45	70	8	12015	2000	3000

注: 其中产业园电子工业水进水需控制氯离子和 TDS 浓度。

②进水水质合理性分析

根据工业园区产业定位和预计的废水特征,工业园区排放的工业污水主要特征。 染物为难降解。COD、氟化物、酸碱、重金属等,工业污水排入园区污水处理厂首先应 《电子工业水污染物排放标准》(GB39731-2020)中间接排放标准。因此, 《电子工业水污染物排放标准》 同时并参考类似同类型园区污水厂进水进行验证,

图形形

同类型园区污水处理厂进水水质情况 表 2.5

			1 37	<u> </u>	1 3 1 3 1 7		13 /X /11/13	0 20:24		
	序号	项目 🔏	v, PH	COD _{Cr}	BOD ₅	SS ,	NH3-N	TN	TP	F- ,
	かり ——		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		西南航空港组团工								2.00-5-V
	1	业集中发展区第六	6-9	400	100	200	25	45	4.6	
	1	期工业多水处理厂	0-9	400	100	200	23	43	4.0	3.3
		期工程							XX-Y	
	2	绵阳吴家工业污水	6-9	175.	√279.5	372.5	35.75	67	7.63	15
	, (X)	处理厂	0-9	475	№ 219.3	372.3	33.73	07	7.03	13
	2	绵阳市永兴污水处	6-9	₹ 00	300	150	25	40	6	20
	3	理厂(扩建)	0-9	70300	300	130	23	40	0	20
	4	本项目设计进水	6.519.5	500	/	400	45	70	8	20
-X		水质	1		·			, 0	Ü	
法人。法人		考虑园区后期入实	驻企业建	建设内容	的不确定	至性,设	计对进力	(水质指	标考虑、	了一定的
Į.	余量	,项目申请报告已	已通过专	家评审(附件九),	,评价认	为本次设	设计进水	水质是基	基本合理

考虑园区后期入驻企业建设内容的不确定性,设计对进水水质指标考虑了一定的 余量,项目申请报告已通过专家评审(附件九),评价认为本次设计进水水质是基本合理 的,但对于从水水质有所控制的 BODs 应补充进水指标,可执行《污水综合排放标准》 (GB8978-1996)表 4 三级标准,本项目接收园区废水指标建议按表 2.6 进行控制。

N. J.		表 2.6 工程进水指标一览表 单位: mg/4, PH, 色度除外								
项目	PH	COD_{Cr}	BOD ₅	SS	氨氮	总氮	总磷	氟化物	Cl	TDS
A STATE OF THE STA	ГП	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
进水水质	6.5~9.5	500	300	400	45	70	8 44	20	2000	3000

注1: 其中产业园电子工业水进水需控制氯离子和 TDS 浓度;

注 2: BOD5指标为评价建议执行指标.

(2)污水处理产出水水质

项目外排尾水出水水质执行《城镇污水处理厂污染物排放标准》(GB189) 8-2002) 一级 A 标准, 其中对于 GB18918-2002 中表明确的氟化物, 执行《污水综合排放标准》 (GB8978-1996)表 4 一级标准。出水水质详见表 2.。

表 2.7 项目排水执行标准一览表

((GB89/8-19	96)衣 4 -	一级你但		10项 评为	上衣 2.。			\ \		
X4)	表 2.7 项目排水执行标准一览表									×	
XXX	项目	PH (mg/L)	COD _{Cr} (mg/L)	BOD ₅ (mg/L)	SS (mg/L)	NH ₃ -N (mg/L)	TN (mg/L)	(mg/L)	氟化物 (mg/L)	粪大肠菌 群数(个/L)	
(H)-	出水水质	6~9	50	10	10	5(8)	15///	0.5	10	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(3)污水	、处理程度	度			×	K			\wedge	1
	综上所	述,本次				7		8.		15-XX	
表 2.8 工程污水处理程度一览表											
	序号 🐃 –	项目		-:	BOD ₅ mg/L)	SS (mg/L)	氨氮 (mg/L)	总氮 (mg/L)	总磷 (mg/L	氟化物 (mg/L)	

(3)污水处理程度

表 2.8 工程污水处理程度一览表

序号	一 项目	COD _{Cr} (mg/L)	BOD ₅ (mg/L)	SS (mg/L)	氨氮 (mg/L)	总氮 (mg/L)	总磷 (mg/L)	ラ 氟化物 (mg/L)
1,19	进水水质(mg/L)	500	300	400	45	70	<u>/-8</u>	20
12/25	出水水质(mg/L)	50	10	10	5(8)	15 💥	0.5	10
3	处理程度(%)	≥90 🚜	≥96.7	≥97.5	≥88.9	≥78.6	≥93.8	≥50

-90 - William Hilling - William - William Hilling - William Hilling - William - Willia

2.2.3 污水处理工艺及合理性分析

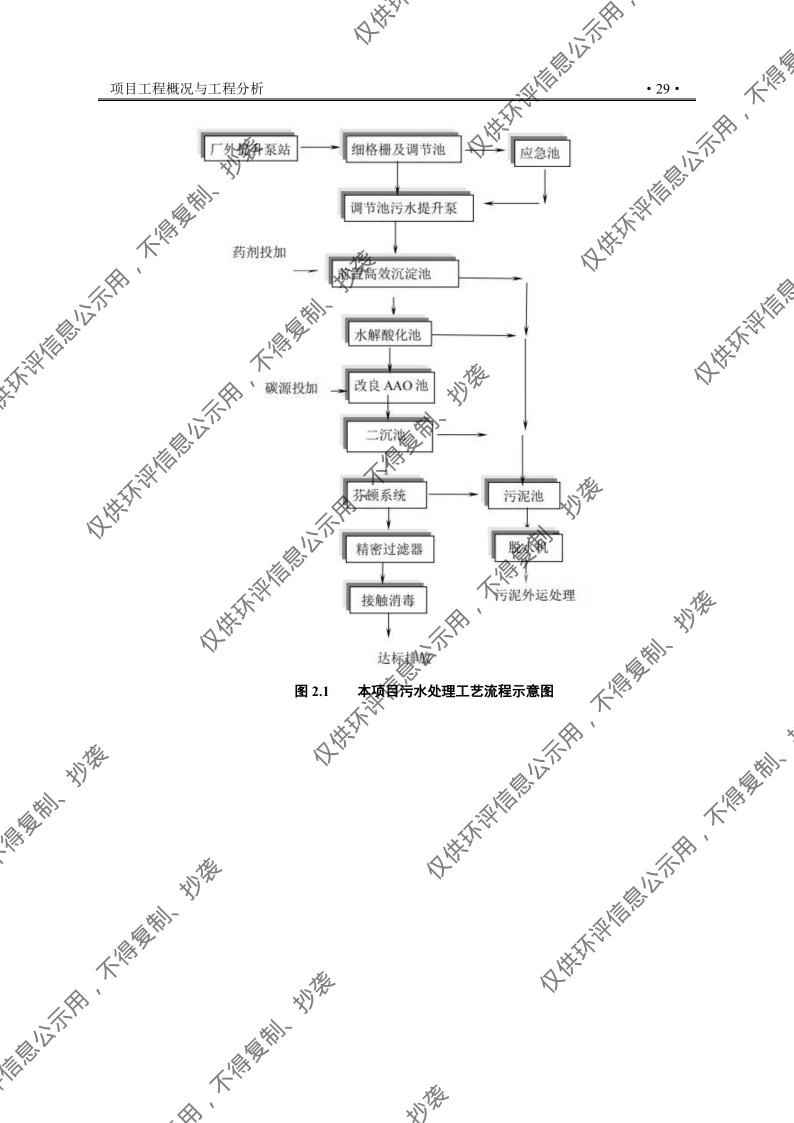
2.2.3.1 污水处理工艺简介

根据本项目申请报告,拟采取的污水处理工艺主要由事故及调节处理、强化《级处理、二级生化处理、深度处理和强化深度处理以及消毒等几部分组成。其中强化一级处理工艺采用混凝沉淀+水解(酸化);二级生化处理工艺采用改良 A/A/O 工艺;深度处理采用芬顿工艺;消毒采用次氯酸钠消毒工艺。主要工艺流程见图 2.2。

2.2.3.1 污水处理工艺选择及合理性分析

(1)本项目处理的废(污)水特点

根据园区的主要规划产业和现场调研情况,产业定位主要半导体相关行业,现有企业主要有,类比同行业,污水类型主要有酸碱废水、含砷废水、含氟废水、有机废水、废研磨液、显影液等,水质较为复杂,主要污染物质以难降解 CODcr、BOD5、SS、TN、TP、氟化物等为主。根据调查,本项目工业废水具有以下特点:


- ①水质水量变化大;
- ②含难降解的 CODcr比例较高,BODs浓度比例低,污水可生化性差。
- ③根据进出水水质设计指标, 脱氮除磷要求高;
- ④可能含有少量的微米级硅晶,该污染物会吸附、累积、富积在生化系统活性污泥中,降低污泥中活性成分的含量,造成污泥的无机化,降低生化系统的处理效率,因此需要进行针对性的预先去除。
 - ⑤总氮中含有大部分有机氮,需要在厌氧环境不进行分解释放成氨氮。

综上,对于该园区工业废水处理,首先需进行必要的预处理,在去除一部分污染物质如有机物、SS等物质,再将难降解的有机氮和COD释放分解之后,再进行生化处理,以确保出水水质达标。

(2)主体工艺路线选择

根据进、出水水质及去除率要求可知,本项目污水处理厂主要以去除有机物、悬浮物、氮、磷为主。根据国内相关污水处理的理论研究和多年运行经验,对于完全工业废水或工业废水占比大的污水处理厂而言,若各项出水指标满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准,必须采用"强化深度处理"工艺、针对进水可生化性不高,二级生化处理工艺前采取"强化一级处理"工艺,用以提高污水的可生化性;为预防有影响污水处理厂二级生物处理单元正常运行的特征污染物的进入。在主要工艺前建设调节池及事故池,以应对来水水质水量波动。为了保证出水稳定达标,需要在生化处理后再添加深度处理单元,因此,本项目工业废水处理工艺为事故及调节处理+强化一级处理+二级生化处理+深度处理+强化漆度处理以及消毒。

XIIX

(3)事故池及调节池工艺选择

项目收水为整个工业园工业废水,由于企业生产受市场、季节、节假日以及产品原材料的变化等因素影响,水质和水量会有较大的变化,容易造成生化段运行事故。导致污水处理产出水超标;同时还有可能存在设备故障、非正常运行工况导致的污水处理厂出水超标。因此,在初段设置事故池和调节池以应对来水水质水量波动是非常必要的,对于不达标废水切换至应急事故池暂存,后逐步输送至废水调节池与其他企业废水混合,混合后 COD 浓度不超过设计进水指标再进入污水处理系统正常处理。

因此,为保证污水处理,这行稳定,减少冲击负荷对处理单元的不利影响,在进入处理系统前设置污水事故池和调节池是非常合理且必要的。本项目事故池和调节池 合建,

(4)强化一级处理工艺选择

常用的强化一级处理工艺有水解(酸化)工艺、化学絮凝强化工艺、AB 法的 A 段工艺等《其中水解(酸化)工艺对 COD 具有良好的降解效果,可使难降解 COD 分解成太部分溶解性小分子有机物,显著改变原水的可生化性,化学絮凝工艺对 SS 具有良好的去除效果,AB 法 A 段工艺和化学除磷工艺对 BOD5 有较好的去除效果。

根据本项目进水水质特点,该厂预测进水该项指标为 BOD CODcr<0.3,可生化性不高,因此,本工程一级处理工艺采用"混凝初沉池+水解酸化池",通过投加 PAC、PAM 进行预沉淀后设置水解酸化池,可有效提高生化系统的可生化性,便于后续的生化处理。

(5)二级生化处理工艺选择

污水处理脱氮除磷效果较好的生化处理工艺主要有氧化沟系列、A²/O 系列、序批式反应器(SBR)系列等,从处理效果来看,上述生化工艺系列均可满足本项目处理要求。但每种处理工艺均各有侧重,在工程特点、使用范围和适用条件上还是存在一定的差别。

①氧化沟系列

氧化沟是活性污泥法的一种改进型,具有除磷脱氮功能,其曝气池为封闭的沟渠,废水和活性污泥的混合液在其中不断循环流动,因此氧化沟又名"连续循环曝气池"、氧化沟具有独特的构造形式,无终端循环水路,使得曝气机产生的溶解氧沿着水流方向产生浓度梯度,并周而复始地发生变化,从而使得氧化沟在去除有机物的同时对混合液中的氮、磷也具有良好的去除效果。氧化沟工艺抗冲击能力强,污泥稳定,基建投资及运行费用较低。目前国内应用较为广泛的主要有卡鲁塞尔氧化沟、双沟式(DE型)氧化沟和三沟式(T型)氧化沟、奥伯尔(orbaL)氧化沟。

XIV

卡鲁塞尔氧化沟是在曝气渠道端部装有低速表面曝气机,在曝气渠内用隔板分格,构成连续渠道,表曝机把水流推向曝气区,水流连续经过几个曝气区后经堰口排出。最新研发卡鲁塞尔 2000 型,把厌氧/ 缺氧/好氧与氧化沟循环式曝气渠巧妙的结合起来,改变了原调节性差、除磷脱氮效果低的缺点,但水力设计更为复杂。卡鲁塞尔氧化沟的缺点是他深较浅,一般为 4m,占地面积大,土建费用高。也有将卡鲁塞尔氧化沟池深设计为 6m 或更深的情况,但需采用鼓风曝气方式,如此则没有管理简便的优势。

双沟式(DE 型)氧化沟为双沟组成,氧化沟与二沉池分建,有独立的污泥回流系统,氧化沟由两个容积相同,交替进行的曝气沟组成。沟内设有转刷和水下搅拌器,实现硝化过程。由于周期性的变进、出水方向(需启闭进出水堰门)和变换转刷和水下搅拌器的运行状态,因此对自控要求较高。三沟式氟化沟集曝气沉淀于一体,工艺更为简单。三沟交替进水,两外沟交替出水,两外沟分别作为曝气或沉淀交替运行,不需设二沉池及污泥回流设备。同 DE 型氧化沟相同,需要的自动化程度高。两种氧化沟均采和转刷曝气,池深较浅, 占地面积大;且各沟交替进行,设备利用率低,一次性设备投资较大。

奥伯尔(orbaL)氧化沟是氧化沟类型中的重要形式,奥伯尔氧化沟是椭圆型的,通常有三条同心曝气渠道(也有两条或更多条渠道),污水通过淹没式进水口从外沟进入,顺序流入下一条渠道,由内沟道排出。奥伯尔氧化沟具有同时硝化、反硝化的特性,在氧化沟前面增加一座厌氧选择池,便构成了生物除磷脱氮系统。污水和回流污泥首先进入厌氧选择池,停留时间约1小时,在厌氧池中完成磷的释放,并改善污泥的沉降性,然后混合液进入氧化沟进行硝化、反硝化,实现除磷脱氮。由于氧化沟池深较浅,占地面积大,土建费用高,且对管理要求比较高。

综上,改良的氧化沟处理工艺虽然具有较好的脱氮除磷效果,但由于占地面积较大,本项目厂区位置有限,不适合本项目采用。

②SBR 系列

SBR 是序批式活性污泥法的简称。是一种以间歇曝气的方式来运行的水处理技术。 SBR 工艺近几年得到发展和创新,出现"CAST"、"MSBR"、"UNITANK"等工艺形式,各有其特点。 SBR 反应器反应过程分为进水、反应、沉淀、排放、闲置 5 个阶段,周而复始,从而达到脱氮除磷效果。研究表明,进水 C/N 在 2.2~3.5 及曝气强度为 48~50L/h 条件下脱氮除磷效果好。 TP、TN 的去除率分别达到 89.4%及 84.5%。 有研究表明, 在碳源适宜的情况下,采用 SBR 工艺 TP、TN 去除率分别达到 96%及 78.3%。但是该反应器容积利用率低,曝气量大,运行成本较高,且不能连续逐行。

③A²/O 工艺(含改良 A²/Q 工艺)

改良 A²/O 工艺就是在传统 A²/O 工艺的厌氧池之前加多一个预缺氧池,采用两点 进水的方式以降低二沉池回流污泥中硝态氮对反氧释磷的影响,并可抑制丝状菌生长, 可以有效提高对磷的处理效果,是处理含磷较高污水的污水处理厂的较佳选择。

0工艺比选

综上,各类生物脱氮除磷工之特点、优缺点对比及与本项目的适配情况见表 2.6。

表 2.6 生物脱氮除磷工艺主要技术指标对比 卷 表

		12.0 土13/1		メントコロイルンコレビ くかごか	<u> </u>
	比较内容	氧化沟工艺	SBR 工艺	A ² /Q 4 Z	改良 A ² /O 工艺
The state of the s	۴	氧海 的泥 化沟 医水 和 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对	一个操作过程分五个 阶段:进水、反应。 风湿、排水、闲置。 这五个阶段都是单型 运行,当处理污水量量 大时,可以进行多组 的交替运行处理	段功能明确, 界线分明, 可根据进水条件	厌氧池之前加多一个 预缺氧池,采用两点 进水的方式以降低二 沉池回流污泥中硝态 氮对厌氧释磷的影
· ·	优点 缺点	抗冲击能力强, 污泥稳 定. 基建投资及运行费	<u>`</u>	广泛,设备和构筑物 数量较少,投资和运	工艺流程简单 对

XIIX

			O. W. T.		-15-EM
	项目工程比较内容	概况与工程分析 氧化沟工艺	SBR 工艺	A ² /Q 工艺 由厌氧 缺氧和好氧	· 33 · 改良 A ² /O 工艺
	工艺特点	氧沟的环境 生向而而机约 不知知识,不知识,不是不知识,不是不知识,不是是是一种,不是是一种,不是是一种,不是是一种,不是是一种,不是是一种,不是是一种,不是一种,不	一个操作过程分五个、 阶段:进水、、 反	明, 可根据进水条件	在传统 A ² /Q 工艺的 厌氧池之前 采用 不是
<		.∧¹	工艺流程简单简为 人名	广泛,设备和构筑物 数量较少,投资和运	工艺流程简单、应用 广泛,设备和构筑物 数量较少,投资和运 行成本低; 易于维护 管理。 A ² /O 工艺的缺点
	适用性	不适于本项目	较高 不适于本项目	不适于本项目	适合本项目

本工程推荐采用"改良 A/A/O 工艺"作为二级生化处理工艺。参考同类工业园区污 水厂的运行情况,该工艺可以满足项目污水生物脱氮的要求。

(6)二沉池工艺选择

二沉池按池体构造,可以分为平流沉淀池、竖流沉淀池、辐流式沉淀池等。周边 进水周边出水辐流式沉淀池克服、中心进水周边出水沉淀池由于异重流造成短路的弊

本项目处理的工业废水水质较复杂,经过生化处理后,可生化的污染物在前端工 艺中已被降解充分,进入本处理工艺环节的残留污染物,均为难于生物降解的有机污 染物,它们共同的特点是,分子链长、化学键能高,化学结构稳定,在于被微生物直 接降解。对于难降解 CODcr的去除,常用工艺有高级氧化工艺、活性炭吸附工艺,其 中高级氧化工艺主要是芬顿氧化法和臭氧氧化法。根据对比,臭氧氧化能力较强,可

製櫃馬,12/15/15 进一步降解难降解有机污染物,且臭氧氧化兼具消毒作用、结合本项目用地条件,强 化深度处理工艺拟选用"芬顿氧化"工艺,实现对难降解 CODcr 的高效去除。

芬顿氧化工艺主要优点表现在:

- 1) 芬顿氧化可氧化破坏多种有毒有害的有机物,适用范围广;
- 2) 反应条件温和,不需高温高压;
- 3) 芬顿氧化产生氢氧化铁(Fe(OH)3) 胶体,通过絮凝-吸附作用对水中 SS 具有 的去除效果:
 - 4)设备简单,可单独处理,也可与其他方法联合处理。
 - (8)出水消毒工艺选择

目前国内污水处理厂采用的消毒方式大致有以下水种: 二氧化氯消毒; 次氯酸钠 消毒;紫外线照射消毒;臭氧消毒。本项目拟采用处理效果好、处理费用适中的次氯 酸钠消毒工艺ン

(9) 海水处理工艺合理性分析

良据上述各工序的工艺方案选择分析,本项目拟采取主要工艺为水质水量调节、 级处理(混合+絮凝+沉淀+水解酸化)、二级生化(改良 A²O 工艺+二沉池)、深度处理(混 合+絮凝+沉淀+V 型滤池)、强化深度处理(臭氧催化氧化+曝气生物滤池)、消毒。

①工艺流程合理性 🐠

A 项目在预处理阶段设置细格栅、事故调节池,可以调节水质水量,保证水质水。 量均衡,避免对居续构筑物造成冲击;

- B、设置前置高效沉淀池和水解酸化池, 去除部分氟化物、SS 及微粒胶体、水解 酸化池对难降解有机物进行水解酸化,水解为易生化的小分子有机污染物%提高 B/C 比,提高污水可生化性,利于提高后续生化处理效率;
- C、采用改良型 A^2/O 生物池进行生化处理,类比同类工程,改良 A^2O 二级生化 处理工艺在城市污水处理的应用中有良好的运行效果,其对 BOD 的去除率基本维持在 96%以上; C0D 的去除率基本维持在 88%以上; 总磷的去除率基本维持在 91%以上; 氨氮的去除率基本维持在 94%以上; 总 N 的去除率基本维持在 55%上。
- D、生化后污水进入二沉池进行泥水分离,之后进入后置高效沉淀池进行混凝沉淀, 进一步除氟化物以及同步加药沉淀除磷,通过中间提升泵提升进入 V 型滤池进行过滤, 过滤吸附未沉淀完全的颗粒物,进一步降低 SS 含量,以避免影响后续二次生化处理效 果。

E、为进一步去除一次生化处理工艺未处理完全的难降解 CODG 和 N, 本项目在 深度处理后采用臭氧催化氧化十骤气生物滤池,通过臭氧催化氧化降解难降解的有机污 〔生物滤池进一步去除 SS、COD、BOD5和总氮,尤其是对于总氮,在

采用外加碳源且在最佳的流速下,脱N能力可达100%。

②各项污染物的 法除效果

类比同类生产工艺,项目采用"物化+生化+深度处理"出水水质可满足《排放标准要求。

综上、采用上述多级组合式的处理工艺,完全可使本项目工业废水处理程度达到 出水水质标准要求。因此,本项目采用污水处理工艺合理。

③同类污水厂运行情况

(1) 西南航空港组团工业集中发展区第六期工业污水处理厂一期工程

项目位于成都市双流区公兴镇兰家沟村 3 组,污水处理厂设计总规模为 10 万 m3 /d,其中一期工程处理规模为 5 万 m³ /d 于 2019 年建设,2022 年验收完成,项目服务范围为成都市双流区内西南航空港组团工业集中发展区第六期和成都高新综合保税区双流园区内所有废水,园区主导产业为航空装备制造、新能源产业、医药、电子行业等,整体上飞业废水占比 85%左右。项目采用处预处理+分阶段进水多级 A/O 生物池+ 反硝化深床滤池+活性碳(焦)处理系统+高效混凝沉淀池+活性氧化铝(发型滤池+次氯酸钠消毒"工艺。出水水质主要指核 COD、NH3-N、TP、BOD5 执行《地表水环境质量标准》(GB 3838-2002) III 类水域标准,TN 执行《四川省城》、沱江流域水污染物排放标准》(DB51/2311/2016)中的"工业园区集中式污水处理厂"排放限值标准,氟化物参照 《城镇污水处理厂污染物排放标准》(征求意见稿)的控制要求"氟化物》1.5mg/L"执行,其余未列入 DB51/2311-2016 表 1 的污染物指标按照《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级人 标准,尾水经管道引至锦江、验收数据

(2) 绵阳吴家工业污水处理厂工程

项目位于绵阳市涪城区吴家镇风凰村,高端制造产业集中发展区西南侧,服务范围为高端制造产业集中发展区、吴家镇片区的所有废水。高端制造产业集中发展区主导产业为新一代信息技术、汽车及零部件、新能源和新材料等产业。其中,新一代信息技术主要发展信息技术中的新型平板显示产业;新能源产业主要以太阳能光伏技术生产蓄电池。污水厂处理规模为 4 万 m3 /d,其中含氟废水设计处理能力 30000m3 /d(环评预测进入的含氟废水为 25000m3 /d),其他工业废水设计处理能力 5000m3 /d(预测进入量 1296.5m3 /d),生活废水设计处理能力 5000 m3 /d(预测进入量 4032 m3 /d)。采用含氟废水(专管接入)"异核结晶+混凝沉淀+吸附+离子交换"预处理工艺+"强化水解+多段多级 AO"生化处理工艺+"高效混凝沉淀+深床滤池+裹氧高级氧化+紫外消毒"的深度处理工艺,出水中(CODCr、BOD5、氨氮、总氮指标能满足《四川省岷江、沱江流域水污染物排放标准》(DB51/2311-2016)标准,总磷指标能满足《地表水环

XIIX

境质量标准》(GB3838-2002)III类水质标准; 氟化物能满足 1.5mg/L 要求。其余指标能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准。

(3) 绵阳永兴污水处理厂扩建工程

绵阳永兴污水处理厂总处理规模 11.5 万 t/d, 工业废水服务范围为绵阳高新区,园区主导产业为电子信息产业、汽车及零部件(机械)、新材料,项目环评于 2017年通过四川省环境保护厅审批,并于停车开工建设,已于 2019年建成投产。工艺采用"调节池→异核结晶 →絮凝沉淀池(化学除磷)→ 活性氧化铝除氟吸附→水解酸化→超细格栅→A/A/O 生化池→MBR→活性炭滤池→紫外线消毒"工艺,项目采用选用"两级反应+两级沉淀+除氟吸粉"工艺组合工艺做为本项目的预处理工艺,以高效去除污水中的 SS、总磷、氟化物:采用"强化水解+A?/O+MBR"等艺组合做为本项目的生化处理工艺,以低成本、高效去除污水中的有机污染物、总磷、总氮等。本项目预处理工艺与永兴污水厂工期工程工业废水预处理工艺一致、本项目出水水质与永兴污水厂出水水质相同,因此本项目处理工艺可类比永兴冷水厂可知是合理的。

2.2.4 污泥处理处置工艺

二沉池底泥排入污泥泵池,一部分回流至 AAO 生物池,一部分送至污泥浓缩池;前后高效沉淀池污泥一部分回流至絮凝池,一部分送至污泥浓缩池;水解酸化池污泥一部分回流,一部分送至污泥浓缩池。系统剩余污泥由泵烧升至污泥浓缩池经机械浓缩后,送至污泥脱水机房进行脱水,脱水后的泥饼外运处置。

①污泥调理》

污泥调理的目的是对污泥进行预处理以提高污泥的浓缩脱水效率,并为进行后续 处理而有采取的改善污泥性质的措施。有机质污泥(包括初沉污泥、腐殖汤泥、活性 污泥及硝化污泥)均是以有机物微粒为主体的悬浊液,颗粒大小不均且很细小,具有 胶体特性,可压缩性大,过滤比阻抗值也大,因而过滤脱水性能较差。因此,为了提 高污泥的过滤脱水性能,有必要进行调理。

污泥调理方法有洗涤、加药(化学调节)、热处理及冷冻熔解法,以往主要采用洗涤 法和以石灰、铁盐等无机混凝剂为主要添加剂的加药法,近年来,高分子混凝剂得到 广泛应用。在以污泥作为肥料再利用时,为了不使有效成分分解,一般采用冷冻熔解 法。在有液化石油气废热可供利用时,则采用热处理法。本项目污泥主要为有机质污 泥,拟采用加药(高分子混凝剂)进行化学调节

② 污泥浓缩、脱水

一污泥脱水目的在于降低污泥含水率,减少污泥体积,达到性质稳定,并为进一步处置和综合利用创造条件。污泥浓缩、脱水一般有以下二种方式:重力浓缩+机械脱水、机械浓缩+脱水。具体优缺点比较见表 2.7。

XIV X

	Ø KA	和原.
呈分析		- St. 100 100 100 100 100 100 100 100 100 10
表 2.7 污水处理		k工艺比较一览表

	· ~ -	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2701X 90°K
序号	项目 🎶	方案一:机械浓缩+机械脱水	方案二: 重力浓缩+机械脱水
1	主要构筑物	污泥均质池、浓缩、脱水机房、 污泥堆	污泥浓缩池、脱水机房、污泥堆棚
2	主要设备	污泥浓缩脱水机、加药设备、冲洗 设备	浓缩池、脱水机、加药设备
3	占地面积	۱,۰	大兴
4	絮凝剂总用量	约 5.0kg/T·DS	≤4.0kg/T·DS
/ <u>\$</u>	对环境影响	无大的污泥敞开式构筑物,对周围 环境影响小,易除臭	污泥浓缩池对周围环境影响大,除臭 难度较大
6	总土建影响	小	大
7	费用	设备费用高、维修和运行费用较高	一般,维修和运行费用低
8	剩余污泥中磷的释放	无 无	有
9	用水量	小 ×	一般
10	用电量	一般	小

综上,两种方案各有优势,且投资相近,由于本项目污泥浓缩池承担着原水 SS 突然升高时的还急处理功能,因此拟采用重力浓缩+板框压滤脱水的污泥处理方案。

2%完最终处置

相前常用的污泥处置工艺主要有焚烧、农田利用、卫生填埋、建筑材料利用等几种。本项目为处理工业废水的污水处理厂,产生的污泥应根据环境保护部《关于污(废)水处理设施产生污泥危险特性鉴别有关意见的函》(环函[2010]129号),"专门处理工业废水(或同时处理少量生活污水)的处理设施产生的污泥,可能具有危险特性,应按《国家危险废物名录》、《危险废物鉴别技术规范》(HJ/T298-2007)和危险废物鉴别标准的规定,对污泥进行危险特性鉴别",经鉴定如属于危险废物,应交由危废处理资质单位进行回收处理,并严格危险废物管理的有关规定进行管理,禁止混入少般生活垃圾中。如经鉴定不具有危险特性,属于一般工业固体废物,可参照当地污水处理厂的污泥最终处置方式进行处置,建议采用焚烧方式。

2.2.4 主要药品使用情况

拟建项目加药间主要药品使用情况见表 2.12。

表 2.12 工程原辅材料使用情况 觉表

	序号	原料名称	使用量
	1	聚丙烯酰胺(PAM)	25.55t/a
	2	聚合氯化铝(PAC)	2190t/a
	3	氯化铁	480.26t/a
	4 🗱	30%液碱	3421.88t/a
	594	稀盐酸	2190t/a
	16	浓硫酸 (98%)	2234.69t/a
	7	双氧水(27.5%)	2654.55t/a
)	8	亚铁(20%)	3650t/a

XIV

	O HE TO SERVICE OF THE PERSON	WILL THE YEAR OF THE PERSON OF
项目工程	概况与工程分析	· 38 ·
9	次氯酸钠(10%)	730t/a
10	乙酸钠	381.052981t/a
11	自来水	41832.29m3/a
12	电	438万度

2.4 附属工程设计

2.4.1 基础形式

考虑拟建物荷重较大且对差异沉降较敏感,建议采用桩基础,桩型建议可采用优 预制桩,桩径可采用 500mm,以土状强风化花岗岩作为桩端持力层,预估本场地桩 长约为 18-40m 建筑物均采用现浇钢筋混凝土框架结构,构筑物采用普通现浇钢筋混凝 土结构。

2.4.2 抗浮设计

污水处理厂内的主要生产性构筑物,一般依靠其自身重量抵抗地下水的浮托力, 建议当建(构)筑物不满足抗浮设计时,需通过增加底板厚度和外挑宽度的措施来满足抗 浮要求。

2.4,3 抗渗防裂

结构措施:水池均采用现浇抗渗砼,以自防水为主。必要时在构筑物的混凝土中 加入适量的防水膨胀剂,补偿混凝土的干缩变形,减少混凝土的水泥用量,提高混凝 土的密实度,从而减少混凝土的干缩裂缝,提高混凝土的抗渗性和抗裂性。防水膨胀 剂的使用按照《混凝土外加剂应用技术规范》GB50119 2003的规定执行。对于大型处 水池,由于砼量较大,要求连续浇注,尽量少设或不设施工缝,在结构配筋上采用"小 直径密间距"的配筋形式,充分发挥钢筋砼的成裂性能。凡预留洞、预埋件应产格按 照结构图并配合其他工种进行施工,未经结构专业许可,严禁擅自留洞或事后凿洞。

施工缝: 池壁水平施工缝可设置在底(顶)板与池壁连接的斜托上(下)部,缝内设置 3mm 厚钢板止水带,其他任何位置不允许设置竖向施工缝。

12.4.4 防腐处理

污水处理厂防腐工程包括: 防腐包括全厂受大气腐蚀的碳钢设备、管道外壁及钢 结构的防腐,污水管道内壁、浸泡污水中管道和埋地管道外壁防腐。受大气腐蚀的碳 钢设备、管道及钢结构的防腐采用一底四面,即环氧富锌底漆一道,环氧云母氧化 中间层一道,厚膜环氧沥青三道,干膜总厚度 320μm。

受污水腐蚀的钢管内壁的防腐采用一底三面,即环氧富锌底漆 一道、厚膜环氧沥青二道,干膜总厚度 290μm。

受污水腐蚀的钢管外壁的防腐采用一底四面,即环氧富锌底漆。道, 厚膜环氧沥青三道,干膜总厚度 320μm。

受土壤腐蚀的钢管外壁的防腐采用涂底漆 P19 一道,复合型聚乙烯防腐带 T-150

一层(搭接 50%),复合型聚乙烯保护带 T-255 一层(搭接 50%),总厚度约 2.1mm。

2.4.5 建筑材料

(1)混凝土强度等级

项目设计池体混凝土强度等级 C35, 抗渗等级 P8, 基础垫层砼强度等级 C20。混凝土掺防裂防水剂。池体厚度 300~700mm。

(2)钢筋和钢材

钢筋:直径 d<10mm 为 HPB300 钢筋,fy=270N/mm²。

(3)墙体

地上以上墙体采用 200×250×600 加气混凝土砌块, 强度等级不低于 A3.5, M5.0 专用砂浆砌筑。地下部分建筑物填充墙采用水泥实心砖,强度等级不低于 MU10, M7.5 水泥砂浆砌筑。

(4)防水材料

构筑物防水:混凝土自防水。

(5)防腐蚀材料

水池: 20 厚 1:2 掺防水剂水泥砂浆面层或 15 厚聚合物水泥防水防腐砂浆。

钢制构件:刷防腐漆。

2.4.6 电气设计

(1)供电电源\

本工程用电为二级负荷,由供电部门提供两回路电源供电,电源电压为 10kV。每一回路电源均应能满足全负荷运行要求。

(2)用电负荷

工程的主要用电负荷集中在X机房、提升泵房等。污水处理厂总装机容量为739.3kW,工作容量为530.1kW,计算容量为500.0kvar。

(3)变电配电系统

本工程根据工艺布置情况,在负荷较集中的鼓风机旁设一变、配电所。10kV 为单母线分段,正常情况下,10kV 母联断开,两路 10kV 电源分列运行,供全厂所有负荷用电,当一路电源故障停电时,10kV 母联断路器投合运行,由另一回路电源供电,确保全厂 100%负荷用电,两电源进线开关与母联开关设置联锁,即:仅当其中之一路电源开发断开后,母联开关才能闭合投运,仅当母联开关断开后,两电源进线开关才能同时投合。

当一台变压器或一段 10ky 与线故障停电后,低压母联断路器投运,由另一台变压器供二级负荷用电。两低压电源进线开关与低压母联开关设置联锁,即:仅当其中

XIII XX

之一路低压电源开关断开后,低压母联开关才能闭合投运、仅当低压母联开关断开后,两低压电源进线开关,能同时投合。本工程低压系统采用接零保护,供配电采用三相五线/单相三线制。

(4)电缆敷设

高压护进出线高压电力电缆采用穿镀锌钢管埋地敷设,低压电力电缆和控制电缆 采用电缆沟和电缆桥架敷设,沟、桥架外采用穿热镀锌钢管敷设。

2.5 工程污染源分析

2.5.1 工程污染因素分析

(1)施工期环境影响因素分析

施工期主要的影响包括:

- ①施工噪声对周边环境的影响。
- ②施工人员产生生活垃圾对区域环境卫生的影响。
- ③施不人员产生生活污水对周围水环境的影响。
- ①对交通的影响:工程建设时,由于车辆运输等原因,可能会使变通变得拥挤,
 - ⑤施工期扬尘对厂界的影响。
 - (2)运营期环境影响因素分析

污水处理厂建成后对周围环境的不良影响主要是污水处理厂排放的尾水、臭气、设备噪声和固体废物。主要为:

- ①污水处理尾水、工作人员产生的办公生活污水均进入市政管网,经区域污水处理厂处理后排放对地表水的影响。
 - ②工艺运行过程中产生恶臭气体对周边区域空气环境质量的影响。
- ③项目处理污水产生的泥渣、泥饼等固废及厂区员工产生生活垃圾处理处置不当 易造成二次污染,影响区域环境卫生。
 - ④设备的运营产生的噪声有可能对评价区声环境质量造成影响。

2.5.2 施工期的主要环境问题

项目施工期间可能产生的环境问题是土建和设备安装中的施工机械噪声污染,施工期废水、施工期间的物料粉尘污染等,本项目施工期产污环节系统分析见表 2.5-1。

表 2.5-1 本项目施工期产污环节系统分析一览表

				.///.
序号	污染类别	污染源名称	产生原因	主要污染物
10	L -// 145/		原料贮存、混凝土配制产生的粉尘,汽车运输及建(构)筑物基础开挖引起二次扬尖	¥/\//\
1/2	噪声	各种施工机械设备	施工活动中推土机、搅拌机、卷扬机等各种振动、转动设备	噪声
3	废水		砂浆配制过程中溢流出的废水等,施工人 员产生的生活污水	悬浮物等

XIV XX

4	田庫	建筑垃圾	施工后期的固体废物	弃土、碎砖、废料等
	凹灰	生活垃圾	施工人员产生生活垃圾	废饭盒、瓜果蔬菜等

施工机械声压级列于第4章。

要以泥砂为主。这类废水一般在施工现场有溢流,排量较少,本工程在施工 中含泥沙水经沉淀池处理后排放,污染影响较小。

(3)施工期间粉尘人

施工期间的粉尘来自于物料堆存、材料拌合、运输、清理等过程,其结果将造成 局部地区大气的污染,尤其是降尘量的增加。施工期间运送散装建筑材料的车辆在行 驶过程中, 将有少量物料会洒落进入空气中, 会形成局部扬尘。另外车辆在通过未铺 衬路面或落有较多尘土的路面时,将有路面二次扬尘产生。 贮料场和暴露松散土壤的 工作面,受风吹时,表面侵蚀随风飞扬进入空气。施工扬尘影响因素包括以下方面:

- ①土壤或建筑材料的含水量、含水量高的材料不易飞扬。
- ②土壤或建筑材料的粒径大小,颗粒大的物料不易飞扬。土壤颗粒物的粒径分布 大概是粒径大于 0.1mm 的占 76%左右,粒径在 $0.05\sim0.10$ mm 的占 15%左右,粒径在 0.03~0.05mm 的占5%左右, 粒径小于 0.03mm 的占4%左右, 在没有风力的作用下 粒径小于 0.015mm 的颗粒能够飞扬, 当风速为 3%5m/s 时, 粒径为 0.015 ~ 0.030 mm 的 颗粒也会被风吹扬。
- ③气候条件,风速大、温度小易产生物尘,当风速较大时会有风扬尘产生。本项 目施工期间使用的散货建材不多,扬尘情况不明显。

(4)施工期固体废物

各建(构)筑物建设过程中将产生一定量建筑垃圾、废土石办/建筑垃圾送到当地市 政管理部门指定地方处置,废土石方可用于周边道路建 焚烧厂焚烧处置。

2.5.3 运营期污染源强分析

- (1)废水排放情况分析
- ①生活污水

根据工程可行性研究报告,项目职工定员 28 人,年工作日约有 365 天 内住宿,只在内办公,本厂区职工用水按照 150L/d 人计算,则生活用水量为 4.2m³/d, 按照 80%的排污系数计算,则工程产生生活污水量为 3.36m3/d。本工程职工生活污水

与工业园污水一起汇入。该部分污水纳入本项目的总污水处理量范围内,不再重复产排估算。

②生产污水

项目运营过程主要的生产污水包括厢式压滤机清洗废水、地面清洗废水、冲洗水等废水, 经收集直接进入项目调节池, 纳入本项目服务处理量范围内, 本次评价不再重复计算产排情况。

③处理尾水

拟建污水处理厂项目的处理量为 2 万 m³/d,根据项目的设计进出水水质以及处理规模,得出该项目外排污水处理前后的污染物的变化情况,具体见表 2.5-2。

表 2.5-2	项目污水处理前后情况一览表	
---------	---------------	--

		* -						
序号	控制项目	COD_{Cr}	BOD ₅	氨氮	总氮	总磷	SS	水量
1	进水浓度(mg/L)	500	150	35	50	3.0	200	
2	出水浓度(mg/L)	50	10	5, 💥	15	0.5	10	
3	处理总量(t/a)	3650	1095	255/5	365	21.9	1460	730 万 m³/a
4	此水总量(t/a)	365	73	136.5	109.5	3.65	73	730 万 m³/a
5	※削减总量(t/a)	3285	1022	219	255.5	18.25	1387	

注: 污水处理厂工作时间按 365 天计

(2)大气污染源

本项目的大气污染主要是污水处理过程中产生的恶臭污染物,主要来自污水处理厂的初级处理构筑物(进水格栅井、进水泵房、速沉池等)以及污泥处理构筑物(污泥浓缩池、污水脱水间等)。恶臭气体中主要污染物包括硫化氢、氨、甲硫醇、三甲胺等、氨具有强烈刺激臭味,硫化氢具有臭鸡蛋气味,这些污染物不仅刺激人的嗅觉器官引起人们的不快,长期接触还会引起厌食、失眠、头痛、恶心、麻醉及耳、鼻、喉干燥不适等症状。

初级处理构筑物和污泥处理构筑物均采取加盖、密闭措施,废气分别 2 套采用生物除臭净化后通过 15m 排气筒排放。

类比远东污水厂验收监测报告数据,该工程验收工况为6万m³/d,根据实际监测数据的恶臭源强计算,结合本项目的污水处理规模对比,计算全厂初级构筑物、污泥浓缩以及深度处理工程等全厂公用工程的处理能力都将新增2万m³/d的废水处理能力,全厂增加的恶臭气体产生为NH₃0.628kg/h(0.2759t/a)、H₂S0.033kg/h(0.0194t/a),具体产生及排放情况见表2.5-3。

表 2.5-3 工程运行后恶臭气体产生及排放情况一览表

序号 主要产臭构										
1 加处理、庆乳 1413 0.0034 80 70 0.0015 0.0006 0.0007 +15m 高排气筒	/ 1		污染物	,	效率			情况 排放速率	情况 排放速率	
///	\ 1		NH ₃	0.0034	180V	70	0.0019	0.0008	0.0007	
		池	H ₂ S	0.00026	339 0	70	0.00015	0.00006	0.00005	

XIII

								X '\ '	
	A ² /O 池	NH ₃	0.0075	0	/	0	0	0.0075	无组织
2	A7O (E	H_2S	0.00039	0	/	0	Q XX	0.00039	儿组织
	集泥池、污泥		0.0083	0.0	70	0.0046	0.0020	0.0017	密闭+1#生物除臭
	浓缩池、污泥 脱水间	H ₂ S	0.00066	80	70	0.00037	0.00016	0.00013	+15m 高排气筒\ (DA001)

注:根据工程验收监测数据,除臭效率达75.5~82%左右,本次评价按保守估计,除臭效率取70% 根据表2.5-3,项目经恶臭气体处理设施处理后可以满足《恶臭污染物件放标准》 (GB14554-93)二级标准要求(NH3和H2S排放速率限值分别为4.9kg/h和0.33kg/h)。

≪(3)噪声污染源

程噪声源主要来自泵房、污泥浓缩脱水设备、风机及空压机等设备,

2.5-4 工程主要高噪设备一览表

			<u> </u>			
	序号	设备名称	数量(台/套)	声源类型	源强范围 (dB)	降噪措施
	1	格栅机	2	室外	55~60	基础减震
	1	提升泵	15	室外	60~65	基础减震
	2	吸泥机	6	室外,	60~65	基础减震
	3	推流器	8	室外	60~65	基础减震
	5	增压泵	3	室内	60~65	基础减震。厂房隔声
	18	循环泵	2	`室内	60~65	基础减震、厂房隔声
<	7.4	污泥提升泵	2 //-	室内	60~65	基础减震、厂房隔声
-	7 8	厢式隔膜压滤机	15 h	室内	65~75	· 建础减震、厂房隔声
	9	罗茨鼓风机	4	室内	90~95	减震、隔声罩、消声器
	10	药液输送泵	3	室内	55~65	基础减震、厂房隔声
	11	空压机	2	室外	80~90	基础减震
	12	螺杆泵	4	室内	65~75	基础减震、厂房隔声
	13	加药泵	2	室内	<i>55</i> ≈65	基础减震、厂房隔声
	14	空压机	2	室内	90~100	减震、隔声、消声器 -
	15	引风机	5	室外	V 75~80	减震、隔声、消声、柔性接头
	16	轴流风机	10	室内	90~100	基础减震、厂房隔声

(4)固体废物污染源

该项目的固体废物主要是污水处理污泥、

①污水处理污泥

污水厂排放污泥的构筑物分别为初沉池、水解调节池 中,水解调节池和二沉池排放的污泥为生化污泥,初沉池和混凝沉淀池排放的污泥为 物化污泥,混凝沉淀池的污泥产生的原因是废水中设加药剂 PAC 和 PAM 所产生的家 凝体。根据设计参数(污泥含水率 65%)、絮凝剂、污泥调理剂和处理效率等,计算本项 目污泥产生量约为 6083t/a。项目建成正式投运后应进行成分分析鉴定,如属于一般固 可送创冠或其他垃圾焚烧厂进行焚烧处置,若属于危险废物,则按危险废物的相 关节理处置要求,送相应资质单位处置。同时评价建议对污泥的浸出毒性指标进行定 产1 *10² 期检测(1次/年)。

②栅渣

污水预处理过程中会产生一定量的栅渣,类比同类污水处理设施,产生量约为3.5t/a,物质成分主要是有纤维物质组成。可统一由市政部门清运同生活垃圾一同送创冠垃圾焚烧厂焚烧处置。

③生活垃圾

本工程员工 28 人,按 0.5kg/d·人计算,生活垃圾交给环卫部门清运可得到有效的处置。

②废包装袋

项目絮凝剂等污水处理药剂部分采用袋装包装,在使用拆包过程中会产生废包装袋,主要成分为废塑料,属于一般固废,产生量约为 0.72t/a,收集后由资源利用单位回收利用。

④危险废物

污水处理处理和运行管理过程中主要危险废物包括水质在线装置产生的废测试液、 实验室分析废液以及设备维修过程产生的少量的废机油。

在线装置废测试液

项目污水处理站总排口的 COO、氨氮、TP 等安装在线装置,在线装置废液含有检测试剂带入的铬、汞、银等重金属元素,属于危险废物(900-047-49),收集后送资质单位处置。

B、实验室分析废液

工程配备 1 个分析实验室,主要对废水进行采样分析,试验过程中会有少量的的剂和废液,属于危险废物(900-047-49),实验室分析废液收集后送资质单位处置。

废机油

厂内配套的叉车、空压机等大型专业设备主要依托周边的专业汽修厂和维修厂。 厂区内主要对水泵等机械设备进行简单维修,维修过程中产生少量的废油(0.2t/a),属于危险废物(900-214-08),采用油桶收集暂存后,送资质单位处置。

2.5.4 项目污染源及防治措施汇总

本项目运营期污染源及采用的治理措施见表 2.5-6

表 2.5-6 项目污染源及拟采用防治措施汇总一览表

				1 1 1	X- V	
序号	污染源	各称	主要污染工序 (或设备)	主要污染物	治理措施	排放、处置方式
	发 水 污染源	(污)水	和回用水处埋系统产 生废水	COD _{Cr} 、	采用"物化+生化+深度处理"工艺	郡 ※市政污水 灣 网 进 入 区 域 污 水 处 理 厂 处 理 达 标 后 排 放
2	大气 污染源	恶臭气体		NH ₃ 、H ₂ S、 甲烷、臭气等	加盖/密闭,通过风管引入1套"碱喷淋+光催化	外排环境

XIV

				R	H. T.			☆ ,
项目]工程概	报况与工程	分析				A MARIE	• 45 •
			泥浓缩池、污泥池、污泥脱水机 池、污泥脱水机 其他构筑物	尼反应 L房		氧化"除 通过,根 15 排 定期喷洒植物 组织	<u>放</u> 勿除臭液,无	外排环境
3	噪声 污染源	噪声	厂区泵房、污泥: 水设备及一些; 备		唱書	基地减震、力 消声器	口防护罩、加	球境
4	固体 废物	污泥格栅生活垃圾	混凝沉淀池、二 预处理 生活	二沉池	污泥纤维物质果皮纸屑等	浓缩、稳 环卫部 环卫部		垃圾焚烧厂焚 烧

工程分期建设情况,对本项目污染源强进行分期估算,根据建设时序安

		表 2.5-/ 全)污染	能物产排情况》	心一览表	
序号		污染物	产生量	削减量	预测排 放总量
1	1115	排水量	1730	0	730
2 4	废水	COD	3650	3285	365
4	1	氨氮	255.5	255.5	36.5
1867	废气	NH ₃	0.1682	0.057	0.1112
XX7	及し	H_2S	0.0115	0.00458	0.00692
8		污泥	6086.5	60865	0
9	固废	生活发叛	1.46	1/46	0
10	凹及	一般不业固废	0.72	0.72	0
11		光	0.2	0.2	0

2.6 清洁生产分析

2.6.1 项目生产工艺和设备分析

(1)生产工艺分析

经工艺比选,本项目采用"预处理+水解酸化+接触氧化+深度处理工艺 废水进行处理。该工艺可有效降解有机物、脱氮除磷,具有有机物及悬浮物的去除效 果好、污泥产生量少、占地面积小、自动程度高等优点,是较为先进的污水处理工艺。 根据分析,从技术可行性、水质目标、占地面积、费用指标《工程实施、环境影响、 运行等多方面比较,该工艺均具有明显的优势。该工艺是水水质稳定高效,并且有较 大的净化潜力。

(2)工艺设备及节能分析

本项目污水处理厂在满足污水处理工艺技术要求的前提下,优先采用优质 技术先进、性能可靠的设备,主要从技术性能、造价、能耗、维护管理方面进行论证。 从项目可行性研究报告中可得知,本项目采用的设备数量少, 的利用,利用率较高,避免出现较多设备闲置浪费的现象。

本项目在保证工作效率的前提下,优先选用节能设备:

节电方面: 合理选择提升泵房的水泵机组,根据实际情况运行水泵,最大限度选用变频设备,降低过滤能耗; 全部电气设备均采用国家产业政策限制内的产品序列和规模容量,不使用已经或将要淘汰的产品,主变压器选用节能型低损耗产品,设备选型优选为国家认证的高效节能产品,达到节约效果,曝气风机选择磁悬浮风机、降低了风机能耗。

节水方面:采用 PLC 控制和高压冲洗泵对压滤机隔膜等设备的冲流,延长冲洗周期,降低冲洗用水量,不但节约能耗,且冲洗彻底。

节药方面:采用先进的控制系统和仪表,根据进水的水量和水压变化,进行实时监控。采用自动加药装置、对处理过程进行监测,通过 PLC 信息反馈控制药剂投加量,使药剂消耗量最省。

自动控制管理系统:项目设置了PLC控制系统、计算机监控系统负责全厂生产过程的监视控制、数据采集、调度、管理和记录。在水处理各工段设置必要的检测仪表,如:压力、流量、液位、pH、DO、COD、复氮、总磷等。所有检测参数均有就地显示,并将信号上传至中央控制室上位机。自动控制系统能确保对污水处理全过程监控、管理以及调整运行参数,保证污水处理系统稳定运行,大大提供了管理水平。

总体来说,本工程选用的正艺设备在技术性能、造价、能耗及维护管理方面是符合清洁生产要求的。

2.6.2 资源和能源消耗分析

根据工程可承报告,年用电量 734.01 万 kW h、本项目节能措施和节能效果分析

- (1) 处理构筑物进行合理分组,适应水质,水量的变化。
- (2)构筑物布置紧凑,管道无迂回,减少了连接管渠的水头损失,节省了污水提升 能耗。
- (3)全厂采用技术先进的微机测控管理系统,分散检测和控制、集中显示和管理,各种设备均可根据污水水质、流量等参数自动调节运转台数或运行时间,不仅改善了内部管理,而且可使整个污水处理系统在最经济状态不定行,使运行费用最低。
 - (4) 厂内风机、水泵等设备的电机全部为变频设备,可节能降耗。

2.6.3 污染物的减少和循环利用

本项目作为工业园区的污水治理设施,可有效较少工业园的废水污染物排放量,降低了工业园废水排放对水环境的影响,同时,本项目运行本身产生、冲洗水、地面和压滤机冲洗废水、污泥浓缩产生的上清液等均回送到污水处理系统处理,经处理达标后排入市政管网或回用,不单独排放;项目构筑物产生的恶臭气体经收集除臭处理后可以实现达标排放,不会对周边环境产生较大影响;项目产生的污泥泥饼交由外单位进行处置,生活垃圾和格栅渣由环卫部门清运,基本不会对外环境造成影响。

XIIIX

从水平的确定 根据以上分析、水项目污水处理工艺较先进、采用节能布制和废物利用等方面符合清洁生产的要求,清洁生产水平较高。 4 清洁生产水平的确定 根据以上分析、水项目污水处理工艺较先进、采用节能布置设计,污染物排放控度物利用等方面符合清洁生产的要求,清洁生产水平较高。 WHITE AND THE REPORT OF THE PARTY OF THE PAR WHITE THE RESIDENCE OF THE PARTY OF THE PART WHITH IN THE RESIDENCE OF THE PARTY OF THE P Alter Alle Marian Maria 测学

大型 大型

圳荣

以推拔

3环境现状调查与评价

- 3.1 区域自然环境概况
- 3.1.1 地理位置
- 3.1.1 地形地貌

张相思·汉东桥 、 晋江、位于闽东南沿海大陆边缘坳陷变带中部,第四系发育。市域地势由西北向东 南海面倾斜,地貌形态以台地、平原为主,主要山峰分布在西北部的紫帽山和中部的灵 源山、高洲山、华表山、罗裳山、崎山、系戴云山系向东南沿海延伸的余脉。台地起伏 和缓,顶部平坦,分布于丘陵的周围,位于从低山丘陵向平原过渡的阶梯状地带;平原 主要分布沿海,最大的平原晋东平原位于晋江市的北部,泉州湾南岸是泉州平原的组成 部分,这里河网密集,地势平坦,土地肥沃。岩性主要有二长花岗岩、花岗闪长岩和金 黑云花母岩。地质结构受东北新华系结构控制。因地处长乐~南澳大断裂中段,境内有 青阳~安海、西坑~古厝、祥芝~围头三条断裂带。本地区地震烈度按照7度设防。

3.1.2 水文地质条件

页目所在区域的水文地质情况分析主要引用《福建省晋江市地下水资源调查评价报 (福建省闽东南地质大队、晋江的水利局,2004年10月)和《晋江集成电路装备产业园 标准厂房项目岩土工程勘察报告》(局,2020年10月)的相关调查结果。主要结果如下:

勘察期间受大气降水的影响,场地内地下水初见水位位少填土层,埋深为0.10~1.60 m, 混合稳定水位埋深为0/20~1.90m(标高-0.25~1.99m)。采用套管隔水,现场实测中砂层面上处 的承压水,埋深约8.90~13.50m(标高-11.58~-6.79m)。水位随季节降雨量水位的变化而变 化,幅度约1.50m,据调查,拟建场地3~5年最高水位标高为2.20~3.00m,历史最高水位 标高为2.50~3.80m。本场地内填土层的渗透性受填料和密实度的影响,总体渗透性弱, 赋水性般,主要赋存上层滞水;淤泥图为微透水层,粉质粘土渗透性弱,属弱透水性土 层,两层可视作的相对隔水顶板,中砂的隔水顶板。中砂属强透水色含水层,残积砂质 黏性土和全风化花岗岩层呈渐变过渡关系,渗透性自上而下有增强的趋势,但总体均属 弱透水层,水量不大,砂土状强风化花岗岩和碎块状强风化花岗岩8为中等透水性含水层: 中风化花岗岩的导水性和富水性受风化裂隙、构造裂隙的控制和影响, 一性,富水性不均匀,总体水量不大。

场地地下水主要为赋存于填土层中的上层滞水(略具承压性),中砂层中的孔隙型承压 水以及赋存于强风化花岗岩层孔隙~裂隙承压水,由于上下含水层间隔水层淤泥和粉质粘 土层分布较连续,上下含水层水力联系较弱。地下水补给来源为相邻场地含水层侧向补 排泄方式以大气蒸发和地下径流为主。

〔候区,以精湿、湿的弱透水土层组成,综合判定本场地环境类别

为II类,地层渗透性中地下水的类型为B。采用桩基础按长期浸水和干湿交替环境综合进行判别。

3.1.3 气候条件

晋江市属南亚热带海洋性季风气候,热量丰富,夏长无酷暑,冬短无严寒、白照充足,蒸发旺盛,水资源欠缺,其气候受季风影响明显。自然天气季节为: 3~6月为春季,7~9月为夏季,10~11月为秋季,12~2月为冬季。特点为:春季阴湿多雨,夏季晴热多台、秋季天高云淡,冬季晴冷少雨。3~6月为雨季,7~9月为台风影响季节。主要气象要素如下:

(1)气温

多年平均气温为20.4℃,2月最低,为12.2℃,8月最高,为28.2℃,气温年较差为16.0℃

(2)降水

多年平均降水量为1246.9m,年最多降水量发生在1983年为2088.5m,年最少降水量为1978年的815.1m,3~9月为雨季,降水量占年降水量的81.8%,10~2月为相对干季,降水量仅占年降水量的18.2%。

入(3)风

盛行风向随本地区地面风风星季节性变化。全年风向以东北风(NE)为主,其频率为21%,5~8月盛行风向为西南偏南风SSW为主,7月频率可达31%,10月至次年3月,盛行风向为NNE~ENE,以东北风最多,2月份最高频率可达32%;4、9月份为过渡季节。各年各月偏西风频率最低为1%,全年静风频率为10.15%,3、4、8月份频率达14%。多年平均风速为3.3m/s。

(4)雾

全年雾日数平均有16.6天,上半年较多,2~5月各月平均再2.2~4.6天以上,最多为4月份的4.6天,下半年较少,7~12月各月平均只有0.1~0.6天。

(5)相对湿度及蒸发

年均相对湿度为78%,年变化规律为春、夏季大,秋、冬季小,月均相对湿度以6月份的86%为最大,以11、12月份的69%为最小,常年蒸发量远远超过降水量,全年除5、6月的蒸发量少于降水量外,其余各月蒸发量均大于降水量,属于干旱区。

(6)灾害性天气

灾害性天气主要有干旱、台风、暴雨、大风,另外还有春寒。

3.1.4 陆域水文概况

晋江市水资源总量多年平均为4.00亿m³,其中地表水资源量达1.04亿m³。受地质构造的控制,境内没有大的河流发育,过境河流主要有晋江、九十九溪以及晋江金鸡水闸引

水工程南高干渠,源于境内低丘、台地或湖泊,独流入海的溪流都是时令溪流,约19条。此外,境内还有龙湖龙源和虺湖两大天然湖泊,以及东山水库、溪边水库、草洪塘水库、新安水库等中小型水库9座。项目附近涉及水文要素较多,主要河流包括: 梧桉溪、梧桐溪、新港河、潘径溪、南港沟等。

(1) 梧楼溪

发源于原罗山镇苏内村,上游汇集山边溪水以及林口水库、洋柄水库排水形成地表径流,由西至东经过原罗山镇的苏内村、张前村、小浯塘村、梧垵村、永和镇的坂头村、折向罗山镇的湖格村、梧林、郑山,而后在南塘村东南侧进入石狮市境内,石狮市境内流程约3.4km,而后进入晋江陈埭境内,在陈埭与石狮交界附近注入泉州湾。梧垵溪全长约16.5km,是罗山镇南部和永和镇北部村庄的主要纳污水体,属于季节性河流,主要用做沿途村庄的排污及灌溉,雨季兼做排洪渠道,丰水期流量可达0.14m³/s。梧垵溪现状功能为纳污、农灌和雨季排洪,主要集周边雨水和沿岸村庄废水而形成,梧垵溪上游河段宽度在0.8~5m不等。

(2)梧桐溪

梧桐溪发源于晋江罗山街道罗裳山,流经罗山、新塘的梧桐、启库、后洋、沙塘等 社区,于军垦农场入泉州湾,流域面积10.7km²,河长7.75km。

(3)新港河

新港河主要功能为行洪、纳污,无相关水文资料,上游来水主要为沿岸村庄生活污水及雨季降雨、汇水单元集水,流经襞谷村及东石镇区。

(4)潘径溪

潘径溪发源于许西坑,流经松柏、下产等村庄,于潘径村汇入海,潘径溪流域面积为12km²,河长6.56km,平均坡降4.3%,现状主要功能功能为行洪、纳艿及农灌,上游有达群水库,总库容为131.4万m³、总集雨面积为2.1km²。

(5)南港沟

南港沟由周边村庄及企业污水排入及雨水形成,起点不停埭镇桂林村,流经陈埭六村围垦地,最终经南港水闸流入泉州湾,全长约4.2km,前2.5km水沟宽度约为18.0m,后1.7公里双沟段宽度约为25.0m,平均宽度约为20.8m,平均水深1.0m。

3.1.5 土壤

晋江市域土壤分为水稻土、砖红壤性土壤、潮土、风沙土和盐土等五类、其中砖红壤性土壤分布最广。从垂直分布来分,海拔50m以下为赤土、水稻土、潮土、风沙土和盐土,从地域性来分,丘陵为红壤、赤红壤;台地为赤红壤和部分之有型水稻土;冲积海平原为风沙土和盐土。其中、城目附近土壤内分布有水稻土、赤红壤及滨海潮滩盐土。

XII THE

3.1.6 海水

晋江海岸线总长**10.9**公里,沿岸蜿蜒曲折,港湾良多,著名的有泉州湾、深沪湾和国,并建成功能互补、配套完善的晋南、安平两大港区。
(1)安海湾 头湾,并建成功能互补、配套完善的晋南、安平两大港区。

安海湾又称石井江、五马江,位于围头澳的底部,为晋江市所辖海域最南端,西与 南安石井镇、水头镇相邻,东与安海镇、东石镇相邻,入围头澳的湾口岛0.8km,南北长 '是一狭长半封闭型小海湾。海湾面积约13.13km²,其中滩涂面积为9.79km²,水域 面积为3.34km²。尤其是在海湾的北半部,低平潮时几乎全是潮滩出露,仅南半部尚有宽 600m的狭长水域,大部分水深在5m以上,自北向南逐渐变深,最大水深12.5m。港池水 深较浅,基岸主要为淤泥质。

①潮汐

安海湾的潮汐为围头澳外传入的潮波经安海湾顶的反射作用下形成的潮汐驻波,潮 汐属正规华日潮,最大潮差为6.82m,最小潮差为2.32m,平均潮差为3.70m,平均涨潮历 时为6小时11分,平均落潮历时为6小时13分,平均潮周期为12时24分。

❤️②潮流

安海湾潮流性质形态数 $F=(WO_1+WO_2)/WK_2$ 均小于0.2,潮流为半日潮流, M_2 分潮在 潮流中占主要成分。受地形的影响,潮流的特征为稳定的征复流,涨潮流向基本为北偏 西方向, 落潮时为南偏东方向。大潮期间, 实测的涨潮最大流速大于落潮最大流速; 东处 石码头附近,涨潮流速约0.5~0.8m/s,落潮流略低约0.5~0.8m/s;而接近湾口处,涨潮 最大流速可达1.23m/s,落潮流速可达0.8m/s。

③ 余流

余流向湾外。 食流向湾内,而两侧靠边滩外,

4)波浪

安海湾为狭长小海湾,湾口狭窄,湾外波浪不易侵入,心内水浅,且多潮滩,不可 能产生较大的波浪。湾外主要受围头澳波浪的影响,波浪较大。利用晋江气象站的风资 料,进行波浪推算东石港的强浪向为西南向,50年、遇的H1/10波高为1.1m;石井港的强 浪向为东南向、30年一遇的H_{1/10}波高为1.82m。

(2)围头湾

国头湾潮汐属于不正规半日潮。围头湾落潮历时略长于涨潮历时,根据石井验潮站 的监测结果(基准面为85国家高程),围头湾平均潮差4.10m,最大潮差4.60m,最小潮差 平均潮差约3.70m,最大潮差6.82m,最小潮差2.32m。该海区属于受 台风影响较大的海域,常有风暴潮产生,风暴潮最大增水数1.37m(6911号台风期间),最 大台风减水为-1.06m。

围头湾潮流为正规半日潮流性质的驻波型潮流,其特征为稳定的往复流,涨 流基本为南北走向,涨潮时流向湾顶,落潮时流向湾口方向。围头湾内潮流速水大,测 验资料表明:测点最大涨落垂线平均流速均在0.9m/s以内。大潮涨潮垂线平均流速为0.6~ 0.75m/s; 落潮最大垂线平均流速为0.8m/s。大潮涨潮量流速为0.68~0.8m/s; 落潮最大 流速为0.98m/s。

围头湾海区的波浪主要来了围头湾湾口的南向涌浪。根据围头角测波站(1961~1979 年)观测资料统计分析,围长湾外海区常浪向为ESE向,出现频率37%,强浪向为ESE向, 最大波高7m,次强浪向为SE和NE向,波高分别为6.8m和6.5m。从波型上分析,本海域 以涌浪为主,涌浪与风浪出现频率之比为69:31。

围头湾海域含沙量较小,水文测验资料表明该海域平均含沙量一般在0.06kg/m³~ 0.07kg/m选着,且大小潮差别不大,涨落潮也无大区别。

3.1.7 植被

态习性为适应干热、风大的气候和贫瘠的土壤等环境特点,具成热带地带特点的种类。 其中不少具耐污和净化大人工氧化硫等污染物的植物,如黄花夹竹桃,石榴、木麻黄、 大叶欢等。本区主要作物有水稻、番薯、大麦、大豆、花生、甘蔗、等; 果树主要有龙丛 眼、芒果、柑桔、香蕉、桃等;此外还有蔬菜、及观赏花草等。

3.2 环境保护目标调查

3.2.1 区域地理位置

晋江市位于福建东南沿海,泉州市东南部,晋江下游南岸,北纬24°30′~24°54′,东 经118°24′~118°43′。东北连泉州湾、东与石狮市接壤,东南濒临台湾海峡,南与金门岛 隔海相望,西与南安市交界,北和鲤城区相邻。海岸线长121km,陆域面积649km²,海 域面积6345km²。集闽南金三角经济开发区、全国著名侨乡、《冷湾同胞主要祖籍地于 晋江市作为中国县级市中唯一的荣获2009年"品牌城市特别奖" 江市集成电路工业园,园区位于晋江市东石镇,建了福厦高铁南侧,景观北路和东石连 接线之间, 滨湖西路东侧、伞都大道西侧。项目地理位置见图3.1。 大根 大根

环境现状调查与评价 • 53 •

3.2.2 项目地理位置及周边敏感点分布情况

图 3.1 项目区域地理位置图

2 项目地理位置及周边敏感点分布情况

本项目位于拟建地点位于晋江市东石镇郭岑村晋江集成电路工业园内,规划范围位 不可用用的。用地范围为:福厦高铁南侧,景观北路和东石连接线之间,滨湖西路东侧、伞都大道西侧。本项目厂址示意图见图3.2。项目软价范围环境保护目标分布情况见报告书第一章1.6小节。 章1.6

环境现状调查与评价 • 54 •



图3.2项目周边环境概况示意图

3.3 环境质量现状调查与评价

3.3.1 大气环境质量现状调查与评价

(1)达标区判断

根据晋江市生态环境局于2024年7月22日发布的《2023年晋江市环境质量状况公报》, 2023年晋江市城市环境空气质量达到国家环境空气质量标准(GB3095-2012)二级标准,首 要污染物为臭氧,项目所在区域属于达标区域。

2023年,晋江市环境空气质量有效监测天数为365天、空气优良率为99.5%,其中优 的天数为228天,占比62.47%,良的天数为135天,长比36.99%,轻度污染天气为两天。 主要污染因子的值分别为 $PM_{10}39\mu g/m^3$ (同比上升7)、 $PM_{2.5}17\mu g/m^3$ (同比上升6)、 SO₂4μg/m³(同比持平)、NO₂17μg/m³(同比上升2)、O₃(90%位)119μg/m³(同比下降4)、CO(95% 位)0.8mg/m³(同比持平)。2023年,晋江市区空气污染综合指数2.48,同比太年上升0.29, 上世率13.2%。

(2)环境空气质量现状补充监测数据 K-IEBAHII-

环境现状调查与评价
①监测情况
本次评价引用《福建(泉州)半导体高新技术产业开发区产业园规划环境影响报告书》
中的大气环境质量监测数据,评价委托福建创投环境检测有限公司于2023年11月2日8日连续7天进行采样监测,引用监测点位为东石四居和白沙村,采样点、采样环境、高度和 频率按《环境空气质量监测布点技术规范(试行)》(HJ664-2013)及相关评价标准规定环境

		. K//	1			
编号	监测点名称	相对厂家 距离/m	相对厂 界方位	监测因子	监测时段	监测频次
G_1	东石四居人	2354.89	西北侧	TVOC、氟 化物、硫 酸雾	-2023年11月2日~8	连续监测7天,其中TVOC8 小时均值每天采样一次;其 它污染物时均值(或一次值)
G_2	东石四居		南侧	甲烷总 烃、NH ₃ 、 HCl、H ₂ S	日	每天采样 4 次, 分别在 02:00-03:00, 08:00-09:00, 14:00-15:00, 20:00-21:00
19 Kgr.		<i>:</i>	ILZ IZ		, 1	
		H. W. S.		· 法人们的 12	K 1	15 ⁷
	Ø,	χ-		117	ζ <u>,</u>	大原 大 原
			XX			K'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
The second second			D. Br			A LIZ

湖湖

大根据 The Table of the state of

AHATATA THE REVISION OF THE PARTY OF THE PA

圳荣

环境现状调查与评价 • 56 •

图 3.4 环境空气补充监测布点图

			E	图 3.4 环境空	气补充监测布	点图		XIII-
	(2	②监测分		-5			K-1/25"	
	ij	监测分析	方法按照国家玩	不保总局颁布	的《环境空气	监测技术规范	\$》和《空 [/]	气和废气
. 1	监测を	分析方法 》	》进行环境空 ^点	〔质量监测,	分析方法见表	3.2.	ζ'	
X)	~		表 3.2	2 环境空气质	量监测分析方	法一览表		
	序号	监测 因子		检测方法		汝法检出限	检测化	器
	1	TVOC	室内空气质量标 物(TVOC)的测定		V 1/2	0.0003 mg/m ³	气相色谱质: TRACE1300	
	2	氟化物	环境空气 氟化 滤膜采样/氟离子		НЈ955-2018	0.0005mg/m ³	离子计算器	J-216
	3	硫酸雾	固定污染源废气 HJ544-2016	. 硫酸雾的测	定 离子色谱法	$0.005 \mathrm{mg/m^3}$	离子 色 CIC-100型	谱 仪
	4	非甲烷 总烃	环境空气 总烃、 直接进样-气相色	130	烷总烃的测定 -2017	0.07mg/m³	气相色 GC-4000A	谱 仪
加加加加			(-18) (H)					
		, &	<i>`</i> \`		XI)			

		D. H. J. L.		· 57 ·
环境现	l状调查与	评价		• 57 •
5	硫化氢	原国家环境保护总局编《空气和废气监测分析方法》(第四版 增补版)第三篇第一章第十 一条(工)亚甲基蓝分光光度法	0.001mg/m ³	可见分光光度计 V1600
6	氨	环境空气 氨的测定 次氯酸钠-水杨酸分光光度法 HJ534-2009	0.004mg/m ³	可见分光光复升 721G
7	氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ549-2016	0.02mg/m ³	离子。 · · · · · · · · · · · · · · · · · · ·
7	总悬浮颗粒物	环境空气 总悬浮颗粒物的测定重量法 HJ 1263-2022	0.007mg/m ³	准微量电子天平 EX225ZH/AD 恒温恒湿称重系统 AMS-CZXT-225A

③评价标准和评价方法

A.评价标准

A.评价标准 TVOC、硫化氢、氨、氯化氢等采用《环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 中其他污染物空气质量浓度参考限值、氟化物、总悬浮颗粒物(TSP)参照《环境空气质量标准》(GB3095-2012)中氟化物浓度限值;硫酸雾、非甲烷总烃参照执行《大气污染物综合排放标准详解》中非甲烷总烃推荐值。 染物综合排放标准详解》中非甲烷总烃推荐值。 B.评价方法

评价根据《环境空气质量评价技术规范(试行)》(HJ663-2013)以及 HJ2.2 的相关要求, 分析最大浓度占标案和超标率情况 计算分析最大浓度占标案和超标率情况。

④监测结果与评价

统计各监测点各种污染物的浓度范围及超标**个数、** 表3.3。

表 3.3 评价范围环境质量现状监测数据统计结果

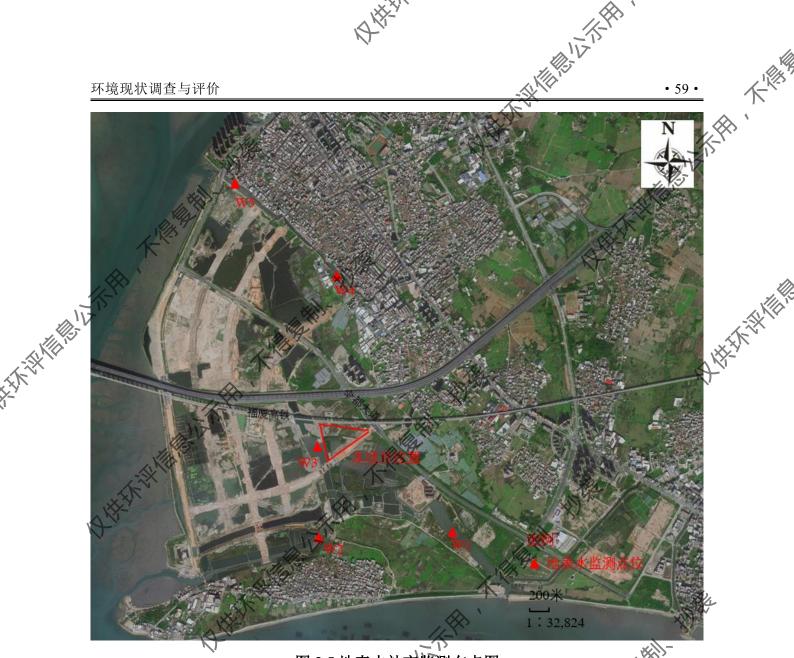
						-XX	*********	_ , , , ,	-,		
	监测	11/-	测点位	数据	监	测结果	最大占标	超标	超标率	达标	标准值
Z	项目	in	测点证	个数	单位	数值范围	率(%)	个数	(%)	↑ 情况	$\left(\mu g/m^3\right)$
XI)	TVOC	G_1	东石四居	7	mg/m³			0	1/2013	均达标	600
3,7	1000	G ₂	白沙村	7	mg/m³			0	0	均达标	
THE STATE OF THE S	氟化物	G_1	东石四居	28	μg/m³		4	1/0	0	均达标	20
DX		G_2	白沙村	28	μg/m³		A.	0	0	均达标	20
	硫酸雾	G_1	东石四居	28	mg/m³		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	0	均达标	200
•		G_2	多沙村	28	mg/m³		4	0	0	均达标	300
	非甲烷	G_1	东石四居	28	mg/m³			0	0	均达标	5000
	总烃,	S 2−	白沙村	28	mg/m³			0	0	均达标》	3000
	硫化氢	G_1	东石四居	28	mg/m³			0	0	均达标	10
	15,14,15,35,0	G ₂	白沙村	28	mg/m³			0	0 💥	均达标	10
^	, 氨	G_1	东石四居	28	mg/m³			0	10	均达标	200
//-		G ₂	白沙村	28	mg/m³			0	0	均达标	200
/											

					O HATTA			NA TOP OF THE PROPERTY OF THE	
环境现状	调查与	可评价							• 58
氯化氢	G_1	东石四居	28	μg/m³		×	0	均达标	50
承化到	G ₂	白沙村人	28	μg/m³		ANO	0	均达标	50

雾、非中烷总烃、氨、氯化氢、硫化氢等的监测浓度均可满足《环境宏气质量标准》 (GB3095-2012)中二级标准限值要求、属于达标区、特征污染物可满足评价标准要求。

3.4.2 地表水环境质量现状调查与评价

2023年,泉州市生态环境状况总体优良。全市主要流域及12个县级及以上集中式饮用水 水源地I~III类水质达标率均为100%。小流域I~III类水质比例为92.3%。近岸海域水质监 测站位共36个(含19个国控站位,17个省控站位),一、二类海水水质站位比例91.7%。


(1)监测点位布设及监测项目

本次评价引用《福建(泉州)半导体高新技术产业开发区产业园规划环境影响报告书》 中的地表水质量监测数据,评价委托福建创投环境检测有限公司于2023年11月3日~4日连 **全**2天进行采样监测,引用晋江分内区工业园监测数据,采样点、采样环境、高度和频率 按《环境空气质量监测布点技术规范(试行)》(HJ664-2013)及相关评价标准规定环境监测 技术规范执行。园区监测点位、监测因子及监测频次见表3.5和图3.4。 ×II荣

表 3.5 地表水监测断面一览表

编号	监测点位		×	<u> </u>
~~ J	监测点位	监测因子	监测频次	
W1	× 潘径溪	水温、pH值少化学需氧量、溶解氧、五		
		日生化需氧量、总磷、氨氮、氯化物、氟	连续监测2天,	
	万水	化物、硫化物、石油类、阴离子表面活性	11/2 34 -1	
XX15	新港河	动 、六价铬、镉、铜、锌、铅、汞	* '	×
•	Ž.	,*	表表現/推展/12/15/15/15/15/15/15/15/15/15/15/15/15/15/	K K K K K K K K K K K K K K K K K K K
	W2 W3 W4 W5	W2 潘径溪 W3 污水厂西侧 W4 新港河	W2 潘径溪 W3 污水厂西侧 W4 新港河 W5 新港河 水温、pH值 化字需氧量、溶解氧、五日生化需氧量、溶解氧、五日生化需氧量、溶解氧、五日生化需氧量、溶解氧、五日生化需氧量、溶解氧、五日生化需氧量、溶解氧、五化物、硫化物、石油类、阴离子表面活性、激、六价铬、镉、铜、锌、铅、汞	W2 水温、pH值、化学需氧量、溶解氧、五 日生化需氧量、总磷、氨氮、氯化物、氟 化物、硫化物、石油类、阴离子表面活性 刻、六价铬、镉、铜、锌、铅、汞 样活动

环境现状调查与评价 • 59 •

(2)监测分析方法

		6	/ ₂ =\\	1.1	32,824	
		V	图 3.5 地表水补充监测布点	图	大機構料	
		监测分析方	法		K-1/25"	
	各.	监测因子检	测方法及使用的检测仪器情况见表 3.	6.	A 1	
**	ν_{ℓ}		表 3.6 地表水环境质量监测分析力	方法一览表	X_XX	×
×1/2	序号	监测因子	检测方法	检出限了	检测仪器	
说)-	1	水温	水质 水温的测定 温度计或颠倒温度计测定法 GB13195-1991	ALKIDIE -	温度计	K-INSTANCE
	2	pH值	水质 pH 值的测定 电极法 HJ1147-2020	/	便携式 pH 计 PHB-4	
_	3	化学需氧化量	水质 化学需氧量的测定 重铬酸盐法 HJ828-2017	4mg/L	滴定管(A级)	
	4	溶解氧	水质 溶解氧的测定 电化学探头法 HJ506-2009	0.5mg/L	便携式溶解氣测定 仪 IPBJ-608	
	5	7五日生化 需氧量	水质 五日生化需氧量(BOD ₅)的测定 稀释与接种法 HJ505-2009	0.5mg/L	生化培养箱 LRH250	
	6	总磷	水质 总磷的测定 钼酸铵分光光度法 SB /T11893-1989	0.01 kmg/L	可见分光光度计 721G	
制态活用						
		<i>`</i>	K W			

			W. W.		• 60
			4		112
				11	1 135
]	环境现料		ît ewe ewe ewe ewe ewe ewe ewe ewe ewe ew	-31/17	• 60
=	_	<i>F F</i>	水质 氨氮的测定	0.025	可见分光光度计
	7	氨氮	纳氏试剂分光光度法 HJ535-2009	mg/L	721G
	8	氯化物	水质 氯化物的测定	2.5	滴定管(A 级)
_	0	录(10-17)	、 硝酸银滴定法 GB/T11896-1989	mg/L	两尺书(A 级)
	9	氟化物	- 水质 氟化物的测定	0.05	离子计
_	9	那个人	离子选择电极法 GB/T7484-1987	mg/L	PXSJ-216
	10	《 硫化物	水质 硫化物的测定	0.01	可见分光光度计
_	10		亚甲基蓝分光光度法 HJ1226-202	mg/L	₹ŸĪG
	ÁD.	石油类	水质 石油类的测定	0.01	紫外可见分光光度
_	//Xx,		紫外分光光度法(试行) HJ970-2018	mg/L	计 752N
13	12	阴离子表	水质 阴离子表面活性剂的测定	0.05	可见分光光度计
'V	12	面活性剂	亚甲蓝分光光度法 GB/T7494-1987	mg/L	721G
			水质 六价铬的测定	0.004	 可见分光光度计
	13	六价铬	一 二苯碳酰二肼分光光度法	mg/L	721G
_			GB/T7467-1987	/	
	14	镉	水质 65 种元素的测定 🦠	0.00005m	等离子体质谱仪
_	- ' '		▶ 电感耦合等离子体质谱法 HJ700 2014	g/L	iCAP RQ
	15	编->	水质 65 种元素的测定	0.00008m	等离子体质谱仪
_	13		电感耦合等离子体质谱法 41700-2014	g/L	iCAP RQ
	16	※ ~	水质 65 种元素的测定	0.00067m	等离子体质谱仪
_	V.		电感耦合等离子体质谱法 HJ700-2014	g/L	ICAP RQ
14	277	铅	水质 65 种元素的测定	0.00009m	等离子体质谱仪
-	1,	γμ	电感耦合等离子体质谱法 HJ700-2014	g/L	iCAP RQ
	18	汞	水质 减,砷、硒、铋和锑的测定	0.00004	原子荧光光度计
-			原子荧光法 HJ694-2014	img/L	AFS-8500
			生活饮用水标准检验方法 第7部分:有		
	19	高锰酸盐	机物综合指标 第4条 高锰酸盐指数(以	0.05	滴定管(A级) 💥
	-/	指数 🔇	O2 计) 4.1 酸性高锰酸钾滴定法	mg/L	17.00 (11.00)
-			GB/T5750.7-2023		# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	20	砷	水质 65 种元素的测象	0.00012m	等离子体质谱仪
		'	电感耦合等离子体质谱法 11700-2014	g/L	iCAP/RQ

(3)评价标准和方法

采用单因子指数法对地表水进行现状评价,单因子指数计算公式为:

i.一般性水质因子i(随着浓度增加而水质变差的水质因子)的指数计算公式: $S_{i,j} = \frac{C_{i,j}}{C_{si}}$ 式中: Si,j: 标准指数;

$$S_{i,j} = \frac{C_{i,j}}{C_{si}}$$

评价因子 i 在 j 点的实测统计代表值, mg/L;

评价因子 i 的评价标准限值, mg/L。

Cs,i: 评价因子 i 的评测 农山山。 Ti.溶解氧(DO)的标准指数计算公式:

$$S_{DO,j} = 10 - 9 \frac{DO_j}{DO_s}$$
 (DO_j < DO_S 时) (3.4-4)

$$\frac{100 + 468}{31.6 + T}$$

式中: SDO.j: 溶解氧的标准指数,大于1表明该水质因子超标;

DQ; 饱和溶解氧浓度, mg/L; 对于河流, DO_f=468/(31.6+T); 对于盐度比较 水库及入海河口、近岸海域,DO (491-2.65S)/(33.5+T);

$$S_{pH,j} = \frac{7.0 - pH_j}{7.0 - pH_{sd}} \quad pH_j < 7.0$$

$$S_{pH,j} = \frac{pH_j - 7.0}{pH_{su} - 7.0} \quad pH_j > 7.0$$
(3.4-6)

式中: S_{pH,j}: pH值的指数,大于1表现该水质因子超标;

pH_i: pH的实测统计代表值;

pHsd: 评价标准中pH值的下限值;

pHsu: 评价标准中pH值的上限值。

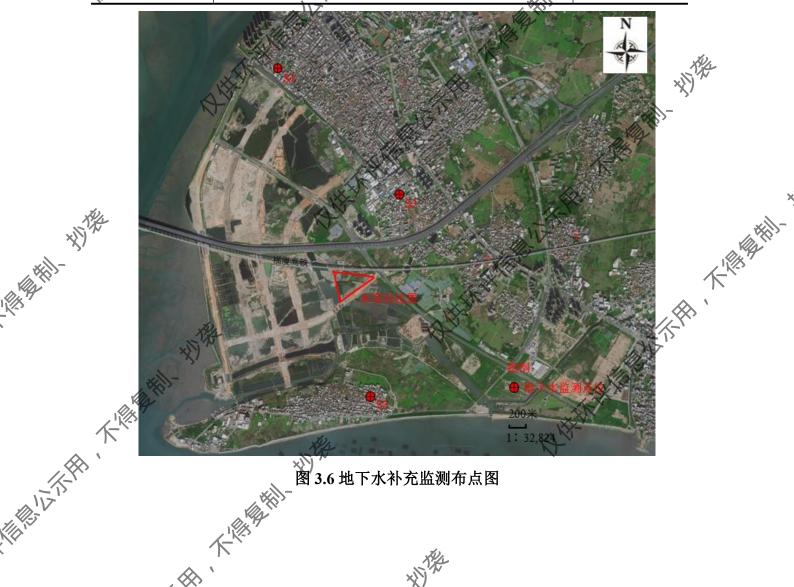
(4)监测结果统计与评价

园区地表水弧状监测结果统计及现状评价结果见表3.7和表3.8,分析发现,监测因子 化学需氧量、五日生化需氧量、氨氮、氟化物、硫化物、石油类、阴离子表面活性剂、 六价铬、镉、锌、铅及汞在各监测点位均符合《地表水环境质量标准》(图3838-2002)中 I类水质标准; DO浓度符合《地表水环境质量标准》(GB3838-2002)中M类标准及以上; 氯化物超出地表水标准限值(250mg/L);总磷在W4的平均浓度达(464mg/L,计算对应Pi 值为1.161,超出《地表水环境质量标准》(GB3838-2002)中IV类标准,其他断面均符合III

				D.			1-12		
						Ji.	No.		1
	环境现状调	查与评价				-31/1/	>,	• 62 •	K-188
	类水质标准	走及以上 。音	邓分污染物质	超标原因可	能与所测点	[位周边农业	k面源污染 <i>]</i>	及上游居民	& '
	生活污水不				ľ	A. 1		117	7-11.
		*://-	表 3.7 7	水质分析方	法及检出限	!一览表		及上游居民	
	监测因子》	单位	采样日期			检测结果			
	<u> </u>		7(-1) 11 591	W1	W2	W3	W4	W5	
	水温	°C		XX.			12,		
	pH 值	无量纲		XX)					
11	工作学需氧	mg/L	大學	>-					
	溶解氧	mg/L	A THE STATE OF THE						NXX.
并 源制制。	五日生化 需氧量	mg/L	(人)		7			K	推議機能
X-	总磷	11110			3,7				
	氨氮	mg/L							
	氯化物 /	mg/L	2023年11	, Ø	KIP K				
	氟化物	mg/L	月3日				4.		
	硫化物	mg/L	7,34	A 1			X)		
	石油类	mg/L		/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			*\$7		
	阴离子表	mg/L	- Williams	(b)		HA HA	_		
	面活性剂	_	11/05						
		mg/L	-11/17			1/2			
	 镉	mg/L	12			1		N. A.	1
	铜	mg/L				Ť		×X	
	算	mg			120			<u>*</u>	
	铅	mg/L		-/-	()-j				
	汞	mg/L			>,		1/2	<u>\$ '</u>	
	水温	°C					'		
	pH值	无量纲		XXXX.			, (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		×
	化学需氧 量	mg/L	K	7.			12,		(
X)) <u>里</u> 溶解氧	ma/I				10-5			ALL TO THE PARTY OF THE PARTY O
(#))-	五日生化	mg/L				AL TO			11/25
**************************************	需氧量	mg/L			1				
	 总磷	mg/L	2023年11		\X\-\	, ,			
		mg/L mg/L	月4日		4			1-12	
	氯化物	mg/L					.<	0.5	
	氟化物	mg/L							
	硫化物	mg/L							
	石油类	mg/L					13,-7,		
Α.	阴离子表		A.	4		K	7		
		mg/L	×X)						

	O FATTA		
proper lader ports of the North Administration of the Nort	3%; W2:37.4%; W3:35.4%; 测结果低于分析方法检出限。	HATTER IN THE PARTY OF THE PART	
环境现状调查与评价		-31/14	• 63 •
六价铬 mg/L 镉 mg/L		XX	
铜 mg/L			
锌 mg/L 铅 mg/L			1/1/25 51. KID
乘 mg/L			<u>X</u>
表 mg/L 1、盐度 W1:38.3 2、"L"表示检	8%; W2:37.4%; W3:35.4%; 测结果低于分析方法检出限。	W4:29.7%; W5:36.3%	
THE THE REPORT OF THE PARTY OF	NAK KA JAWA A KA	· · · · · · · · · · · · · · · · · · ·	NHT THE
	HIN-		
A THE TOTAL PROPERTY OF THE PARTY OF THE PAR	(1) T		N. T.
	~ 1	XX.	Ø.
- 15-XX,	χ - <i>/</i> // ₋ //	s/	
	\	.£1.	
W.Th.		XISTA	
Ø4	115	**//-	
		K.	H.
A WENT	<u> </u>	<i>à</i> '	×X)
A.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		拱)-
	大块块, "大块,"	A KIRAN KIRAN	
		大 、	
A),	12/4/2	//_ 	大塊塊糊
WANTER AND THE REAL PROPERTY OF THE PERTY OF	V		
# <u></u>		AL KILLIE	11/25
		K. X	^ \ \
N- Als	N. K.	Y -'	15-15
***************************************		. W	117
# <u>#</u>		-34/11/1	
		XXXXXX	
大	XX.	AR-	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	**)		
	<i>3</i> >-		
(本)			
´N	X) XX		
, XX	X		

3.4.3 地下水环境质量现状调查与评价


Att A White Control of the Control o 点位(包括4个国控点位、21个省控点位),水质I-IV类点位共计20个,占比80.0%。其中, III类9个义化类11个;水质V类5个。

①监测情况

本次评价引用《福建(泉州)、丰导体高新技术产业开发区产业园规划环境影响报告书》 中的地下水质量监测数据、评价委托福建创投环境检测有限公司于2023年11月3日~4日 连续2天进行采样监测,引用晋江分园区工业园监测数据,园区监测点位、监测因子及 监测频次见表3.9和图3.6。

表 3.9 地下水环境质量监测点位一览表

	表 3.9 地下水环境质量监测点位一览表	
监测点位	监测为子	监测频次
东石四居(S1)	pH值、高锰酸盐指数(以 Q2 计)、总硬度、溶解性总固体、 氰化物、氟化物、硫化物、氯化物、氨氮、硝酸盐氮、亚、 硝酸盐氮、挥发酚、铁、锰、铜、汞、砷、镉、六价铬、 铅、镍、锌。	观扬采样,每天 进行1次采样活 动

湖海

②分析方法

各监测项目的样子采样、保存及分析均按《地下水环境监测技术规范》(HJ164-2020) 和《地下水质量标准》(GB/T14848-2017)规定进行,各检测项目检测方法及使用

表 3.10 水质分析方法及检出限一览表

		<u> </u>		<u> </u>
	序号	检测项目	检测方法	检出限
	(A)	pН	水质 pH 值的测定 电极法 HJ1147-2020	
表表。 表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	5-2	汞	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ694-2014	0.04μg/L
NIV	3	镉	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.05μg/L
1/15	4	铅	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.09μg/L
-31/17	5	镍	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.06μg/L
XX.	6	铁	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.82μg/L
\$_ y	7	锌	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.67μg/L
`	8	铜	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.08μg/L
	9	砂厂	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	0.12μg/L
	10	// 疑 ^己	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ694-2014	0.2μg/L
	11	六价铬	生活饮用水标准检验方法 金属指标 GB/T5750.6-2006 10.1 二苯碳酰二肼分光光度法	0.004mg/L
K	1/2	氨氮	生活饮用水标准检测方法 无机非金属指标 GB/T5750.5-2006 9.1 纳氏试剂分光光度法	0.02mg/L
	13	耗氧量	生活饮用水标准检验方法 有机物综合指标 GB/75750.7-2006 1.1 酸性高锰酸钾滴定法	0.05mg/L
	14	硝酸盐	水质 无机阴离子(F-、Cl-、NO ₂ -、Br-、NO ₃ -、PO ₄ ³⁻ 、SO ₃ ²⁻ 、SO ₄ ²⁻ 的测定 离子色谱法 HJ84-2016	0.016mg/L
	15	亚硝酸盐	水质 无机阴离子(F⁻、Cl⁻、NO₂⁻、Br、 NO₃⁻、PO₄³⁻、SO₃²⁻、SO₄²⁻ 的测定 离子色谱法 HJ84-2016	0.016mg/L
	16	氟化物	水质 无机阴离子(F ⁻ 、Cl ⁻ 、NO ₂ Br ⁻ 、NO ₃ ⁻ 、PO ₄ ³⁻ 、SO ₃ ²⁻ 、SO ₄ ²⁻ 的测定 离子色谱法 HJ84-2016	0.006mg/L
	17	氰化物	生活饮用水标准检验方法 无机非金属指标 GB/T5750.5-2006 4.1 异烟酸-吡唑铜分光光度法	0.002mg/L
	18	硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ1226-2021	0.003mg/L
XI) TX	19	总大肠菌群	生活饮用水标准检验方法 微生物指标 GB/T5750.12 2006 2.1 多管发酵法	2MPN/100mL
A)	20	苯胺类化合 物	水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB11889-1989	0.03mg/L
THE STATE OF THE S	21	N, N-二甲基 甲酰胺	环境空气和废气 酰胺类化合物的测定 液相色谱法 HJ801-2016	0.06mg/L
*		(3)评价标准	和评价方法	112

大型

②评价方法

			AN		1/3	74.	
			'\/		MIV		
	环境现状调查与	评价			技術學	• 67 •	
					THE STATE OF THE S		= ' \
	评价方法	采用单因子指数	数法,计算式为	j:	X-Y		
		The second second	$S_{i,j}=C_{i,j}$	$/C_{s,j}$	•	(3.4-8	+15
	式中,C _{i,j}	· 水质评价因	子i在第j取科	* #点的样品浓度	\overline{C} , mg/L; $C_{s,j}$:	评价因子评	<i>V</i>
	式中,C _{i,j} 标准,mg/L					-51/17	
		监测结果与评价	价			XX.	
	. 1	测数据及统计约	4.1		R		
			×/// .	现状监测结果-			
115	<u> </u>	7, 0.1	1 22 71 71 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
技术规制的	检测项目	单位	东石四居 S1	检测结果 郭岑村 S2	白沙村 S3	标准限值	
-11/11	 pH 值	无量纲	, , , , , , , , , , , , , , , , , , , ,	1, , , , ==	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.5~8.5	- XX-7
The state of the s	高锰酸盐指数	Ama\I		The second second		€3.0	4
\$_ ^y	(以 O2 计)	mg/L		*\)'			_
•	总硬度	mg/L		<u>**/</u> -		≤450	_
	溶解性总固体	mg/L				≤1000	_
	氰化物	mg/L	1	5 ⁷		≤0.05	_
		mg/L	不		<i>\$\sum_{\s\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sym_{\sym_{\sym_{\sum_{\sum_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\s\sum_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\s\sum_{\sym_{\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s</i>	≤1.0	_
	硫化物	mg/L	*		197	≤0.02	_
,4	氯化物	mg/L	/ / Xx,		'3,1	€250	_
	大 氨氮	mg/L	112		<u> </u>	≤0.5	_
	硝酸盐氮	mg/L	, , ,			€20	_
	亚硝酸盐氮	mg/L		6-	1 /2 /	≤1.00	_
1	挥发酚	mg/L		1		≤0.002	XVL
		mg/L		/ *		≤0.3 ≤0.1))
	<u></u>	\\mg/L		//-X/		7011	_
	铜	mg/L		112		≤1.0 -	_
	汞	mg/L	4/	4 5-		€0.001	_
	砷	mg/L	X.XX	> '		€0.01	_
	镉	mg/L			,	> ≤0.005	_
	二 六价铬	mg/L	(X <u>X</u>)/		⊗ '	≤0.05	_ >
X	铅	mg/L	N.		1/-X.	≤0.01	- 5
'Alx	镍	mg/L	1/1		1121	≤0.02	- (Ki))-
3/	锌	mg/L			1/05	≤1.0	D. Y
(K))-		水位埋深: S1:5	5.1 米;S2:11.2 ź	米; S3:3.1 米; S	4.0.6 米;S5:2.4	米。	- - - -
MA .	备注	2、井深: S1:6.	5米; S2:15米;	S3:5.5 米; 84:2	.6米; S5:3.0米。		
NA N		3、"L"表示标	佥测结果低于分 标	斤方法检出限。			, '
•		表 3.12	地下水环境质量	量现状评价结身	果一览表	1-15-1	_
		1				. 117	_

表 3.12 地下水环境质量现状评价结果

检测项目		评价结果	
位,例 页 日	东石四居 S1	郭岑村 S2	白沙村 S3
pH 值			
高锰酸盐指数			XX
(以 O2 计)	Zi).		NA-
总硬度			NT.
溶解性总固体	*,7		

	R	H. T.	ALZ TY	
环境现状调查与评价			THE INTERPRETATION OF THE PARTY	• 68 •
氰化物		X	K	
氟化物	zi).	10/17		
硫化物		V		
氯化物 3				
氨氮※				
硝酸盐氮			150	X
亚硝酸盐氮			14,71	
挥发酚	XV.		AN	
≪ 、 铁	W. M.			
锰	3,7			
铜铜	Wall-			
汞	D. PA			
砷	1 25			
镉		XVL		
六价铬 众	\	XIZ X		
铅		3'		
镍、1/2		(H)-		
		04		

从监测与评价结果可以看出,白沙村 S3 的氨氮含量分别为 1.78mg/L,超出《地下 水质量标准》(GB/T14848-2017)Ⅲ类标准中规定的≤0.5mg/L,超标倍数分别为 3.56; 此 亦, 郭岑村 S2 的亚硝酸盐含量分别为 1.18mg/L, 超出 地下水质量标准》 (GB/T14848-2017)Ⅲ类标准中规定的≤1.00mg/L,超标倍数分别为 1.18。其余各监测点 位指标均未出现超标现象。调查走访后认为郭岑村、白沙村的氨氮和亚硝酸盐含量超少 标与生活污水的排放有关。

3.4.4 土壤环境质量现状调查与评价

(1)调查站位及调查时间

一次可以表导体高新技术产业开发区产业园规划环境影响。 一种 中的地下水质量监测数据、评价委托福建创投环境检测有限公司于2023年1 月3日~4日连续2天进行采样监测,引用晋江分园区工业园拟建污水处理厂监测数据, 监测点位、监测因子及监测频次见表3.13和图3.6。 表 3.13 土壤环境质量 116.750 本次评价收集、引用《福建(泉州)、丰导体高新技术产业开发区产业园规划环境影响 报告书》中的地下水质量监测数据。评价委托福建创投环境检测有限公司于2023年11

监测点位	监测因子	监测频次
拟建污水厂区域(0-0.2m) T1	砷、镉、六价铬、铜、钴、汞、镍、四氯化碳、氯	-15-
拟建污水厂区域(0-0.5m、	· 仿、氣甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二	MIV
0.5-1.0m) T2	氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯	五
	甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-0	均采1个
0.5-1.0m) T3	氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙	土壤样品
√ 拟建污水厂区域(0-0.5m、	烷,三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、	工物行品
`	2.2 二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间	
0.5-1.0m) T4	二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-	
	•	

WHITE IN THE 氯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k] 荧蔥、蘆、二苯并[a、h]蔥、茚并[1,2,3-cd]芘、萘

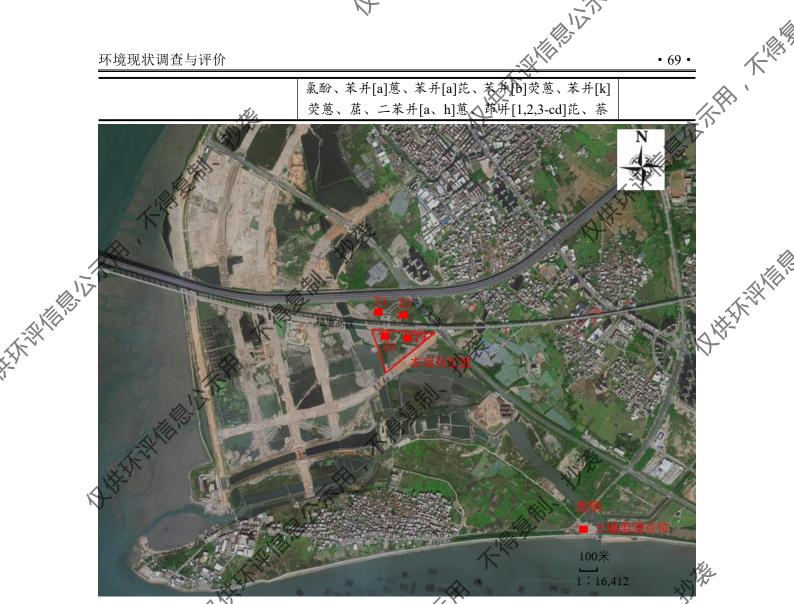


图 3.7 土壤补充监测布点图

表 3.14 上壤环境质量标准值一览表

		Ø,	图 3.7 土壤补充监测布点图			
	(2)	分析方法			19/5	
	各	监测因子分	析方法按《土壤环境质量 建设用地土	壤污染风	险管控标准(试行)》	
.Zi	(GB366	500-2018)执	行,见表 3.14。	//	₩ `	×
XI	<i>-</i>		表 3.14 土壤环境质量标准值一	览表。	>	1-1/15 A
.3.	序号	监测因子	检测方法	检出限	检测仪器	DIX P
	1	砷	土壤质量 总汞、总砷、总铅的测定原子荧光法 第2部分:土壤中总砷的测定GB/T22105.2-2008	0.01 mg/kg	原子荧光光度计 AFS-230E	K.,
	2	额卷	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 GB/T17141-1997	0.01 mg/kg	原子吸收分光光度 计 AA-7903G	
	3	六价铬	土壤和沉积物六价铬的测定 碱溶液提取一火焰原子吸收分光光度法 HJ1082-2019	0.5 mg/kg	原子级收分光光度 计TAS990AFG	
<i>^</i>	1 1 1	铜	土壤和沉积物铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ491-2019	l mg/kg	原子吸收分光光度 计 TAS990AFG	
15-15-15	5	铅	土壤质量 铅、镉的测定	0.1 mg/kg	原子吸收分光光度	
THE TOTAL STATE OF THE STATE OF		⋌	THE PERSON NAMED IN COLUMN TO PERSON NAMED I			
		, & `	· William Control of the Control of			

			13.		· 70 ·	
			D.		-15-	
			•	Z	117 m	- K
		15 Net - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		111		
	环境现		<u> </u>	-31/1/	• 70 •	_
	序号	监测因子	检测方法	检出限	检测仪器	△ `
			★ 石墨炉原子吸收分光光度法	1	计 GGX-920	K.
			GB/T17141-1997		1	-(1) 17
	(王。	人 土壤质量 总汞、总砷、总铅的测定	0.002	原子荧光光度	V
	6	汞料-	原子荧光法 第 1 部分: 土壤中总汞的测定 GB/T22105.1-2008	mg/kg	AFS-8500	
		District Control	土壤和沉积物铜、锌、铅、镍、铬的测定	3	原子吸收分光光度计	-
	7	4	火焰原子吸收分光光度法 HJ491-2019	mg/kg	TAS990AFG	
	-	一一一	土壤和沉积物 挥发性有机物的测定	0.0013	气相色谱质谱联用仪	-
	· 🔆 `	四氯化碳	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	<i>(</i>)>
	15-0	与 <i>任</i>	土壤和沉积物 挥发性有机物的测定	0.0011	气相色谱质谱联用仪	
AIV		氯仿	吹扫捕集/飞相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	-31/1/2
1115	10	氯甲烷	土壤和沉积物 挥发性有机物的测定	0.0010	气相色谱质谱联用仪	K,
THE WHITE TO	10	双丨炕	吹拍攝集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	XX
THE STATE OF THE S	11	1,1-二氯	土壤和沉积物 挥发性有机物的测定	0.0012	气相色谱质谱联用仪	A.
> -		乙烷	、吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	_
\	12	1,2-二氯	土壤和沉积物 挥发性有机物的测定	0.0013	气相色谱质谱联用仪	
		て烷 1,1 字氣	吹扫捕集/气相色谱-质谱法 H1605-2011	mg/kg	TRACE1300/ISQ7000	-
	13		土壤和沉积物 挥发性有机物的测定	0.0010	气相色谱质谱联用仪	
		之烯	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	-
	14	₩-1,2-二 氯乙烯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ605-2011	0.0013	气相色谱质谱联用仪 *TRACE1300/ISQ7000	
	A KI		土壤和沉积 的 挥发性有机物的测定	mg/kg	气相色谱质谱联用仪	-
Ý	15	风-1,2-一 氯乙烯	吹扫捕集/气相色谱-质谱法 HJ605-2011	0.0014 mg/kg	TRACE1300/ISQ7000	
			土壤和流积物 挥发性有机物的测定	0.0015	气相色谱质谱联用仪	-
	16	二氯甲烷	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
		1,2-二氯	土壤和沉积物 挥发性有机物的测定	0.0011	-	- IV.
	17	丙烷	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	气相色谱质谱联用仪 TRACE1300/ISQ7000	
	1.0	1,1,1,2-四	土壤和沉积物 挥发性有机物的测定	0.0012	气相色谱质谱联用仪)
	18	氯乙烷	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
	19	1,1,2,2-四	土壤和沉积物 挥发性有极物的测定	0.0012	气相色谱质谱联用仪	-
	19	氯乙烷	吹扫捕集/气相色谱-质谱等 HJ605-2011	mg/kg	TRACEI300/ISQ7000	
	20	四氯乙烯	土壤和沉积物 挥发挫有机物的测定	0.0014	气相色谱质谱联用仪	
			吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	- 🔀
NA THE REAL PROPERTY OF THE PERTY OF THE PER	بر 21	1,1,1-三氯	土壤和沉积物 挥发性有机物的测定	0.0013	气相色谱质谱联用仪	. 7
-123	<u> </u>	乙烷	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
3,7	22	1,1,2-三氯	土壤和沉积物 挥发性有机物的测定	0.0012	气相色谱质谱联用仪	1. A
#3)-		乙烷	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	- /-
	23	三氯乙烯	土壤和沉积物 挥发性有机物的测定	0.0012	气相色谱质谱联用仪	\
		1 2 2 一 与	吹扫捕集/气相色谱-质谱法 HJ605-201	mg/kg	TRACE1300/ISQ7000	7
	24	1,2,3-三氯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ605-2011	0.0012	气相色谱质谱联用仪 TRACE1300/ISQ7000	,
		丙烷化	土壤和沉积物 挥发性有机物的测定	mg/kg 0.0010	气相色谱质谱联用仪	-
	25	氯乙烯	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
		(()) -	土壤和沉积物 挥发性有机物的测定	0.0019	气相色谱质谱联用仪	_
	26 1	苯	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
	27		土壤和沉积物 挥发性有机物的测定	0.0012	和色谱质谱联用仪	_
	127	氯苯	吹扫捕集/气和色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
	20	1,2-二氯	土壤和流积物 挥发性有机物的测定	0.0015	气相色谱质谱联用仪	_
//-X	28	苯	吹扫捕集/气相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
, - V			- //.\X.		. ` ` `	_

XIX

			Ø.		11-15-	
				4	Ø5-	
	环境现	伏调查与评 价		-31/10	· 71 ·	大學
	序号	监测因子	检测方法	检出限	检测仪器	♠ '
	29	1,4-二氯 苯	土壤和沉积物 挥发性有机物的测定 场扫捕集/气相色谱-质谱法 HJ605-2011	0.0015 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQ7000	15-XX
	30	乙苯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ605-2011	0.0012 mg/kg	气相色谱质谱联用 没 。 TRACE1300/IS Q7 000	<i></i>
	31	苯甲烯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ605-2011	0.0011 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQ7000	
	32	甲苯	土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ605-2011	0.0013 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQ7000	
法不识相思	22	间二甲苯 +对二甲	土壤和沉积物 挥发性有机物的测定	0.0012	气相色谱质谱联用仪	HEARTH
117		苯	吹扫捕集/克相色谱-质谱法 HJ605-2011	mg/kg	TRACE1300/ISQ7000	
	34	邻二甲苯	土壤和沉积物 挥发性有机物的测定 吹扣捕集/气相色谱-质谱法 HJ605-2011	0.0012 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQ7000	N XXX
A. T.	35	硝基苯	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ834-2017	0.09 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQLT	V
	36	苯胺	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ834-2017	0.08 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQLT	
	37	苯胺	土壤和沉积物 酚类化含物的测定 气相色谱法 H1703-2014	0.04 mg/kg	气相色谱仪 7890A	
	38	苯并[a]蒽	土壤和沉积物 多环芳烃的测定 气相色谱-质谱法 HJ805-2016	0.12 mg/kg	气和色谱质谱联用仪 **TRACE1300/ISQLT	
*	39	苯并[a]芘	土壤和沉积物 多环芳烃的测定	0.17	气相色谱质谱联用仪 TRACE1300/ISQLT	
	40	苯并[b]荧 蔥	土壤和沉积物 多环芳烃的测定 一种色谱-质谱法 HJ805-2016	mg/kg 0.17 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQLT	
	41	苯并[k]荧	土壤和沉积物 多环芳烃的测定 气相色谱-质谱法 HJ805-2016	0.11	气相色谱质谱联用仪	
	42	萬 萬	土壤和沉积物 多环芳烃的测定	mg/kg 0.14	TRACE1300/ISQLT 气相色谱质谱联用仪	
	43	二苯并[a、	气相色谱-质谱法 HJ805\2016 土壤和沉积物 多环芳基的测定	mg/kg 0.13	TRACE1300/ISQLT 气相色谱质谱联用仪	
	44	h]蒽 茚并	气相色谱-质谱法 从8 05-2016 土壤和沉积物 多环芳烃的测定	mg/kg 0.13	TRACE(300/ISQLT 气相色谱质谱联用仪	
	44	[1,2,3-cd]芘	气相色谱-质谱法 HJ805-2016 土壤和沉积物 多环芳烃的测定	mg/kg	TRACE1300/ISQLT	3
XI)	45	茶	气相色谱-质谱法 HJ805-2016	0.09 mg/kg	气相色谱质谱联用仪 TRACE1300/ISQLT	1-10 M
# <u></u>	46	pH 值	土壤 pH 值的测定 电位法 HJ 962-2018		便携 pH 计 STARTER 300	A THE STATE OF THE PARTY OF THE
AND	47	总铬	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ491-2019	4 mg/kg	原子吸收分光光度计 TAS990AFG	`\
	48	锌灰	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ491-2019	1 mg/kg	原子吸收分光光度计 TAS990AFG	,
	49	氟化物	土壤质量 氟化物的测定 离子选择电极法 GB/T22104-2008	12.5 mg/kg	离子/ PX8J-216	
	(3)	评价标准和	口评价方法			
	个评		点土壤执行《土壤环境质量 建设用地土			
1125年	和《土	壤环境质量	世 农用地土壤污染风险管控标准(试行)》	(GB156)	18-2018)直接对照的	
117						
		1				
		<i>∧</i> '				

XIX

方法(GB36600-2018)。

(4)监测结果与评价

本次评价土壤环境质量现状监测及评价结果见表3.15

大學學

表 3.15 土壤监测分析结果一览表

单位: mg/kg

A HATTONIA TO THE PARTY OF THE

<u> </u>	平型: mg/k			N-1X	10万万年末 1	3.13 上坡皿恢	10		7//, 1	-
_	地筛选值	第一类用				检测结果(mg/kg	& \ ·	,		
Ý	农用地	建设用地	0.5-1.0m	0-0.5m	05-1.0m	0-0.5m	0.5-1.0m	0-0.5m	T1 0-0.2m	检测项目
_	40	20	XIIIX			1		M-V		神
_	0.3	20	```			1		7///		镉
_	150	3	<u></u>	×		₩,		(IV)		
	50	2000		W/A		//-			1	铜
	70/90	400		19/57		(7)	1		1XX_Y	铅
	1.3/1.8	8×1		4		V	10-		N	
	60/70	150							1	镍
_		0.9					-31/1/			四氯化碳
_		0.3			//-			1		氯仿
		12	1/25		117			144-		氯甲烷
() (×	3	不		25	.4		14/41		
_		3								烷烷
	(KI)	0.52	\(\rangle\)							1,2-二氯乙
_	KA	0.32		//-'		N/				烷
	8	12/1		117		_\ _\	\X			1,1-二氯乙
_		12		47-5		,	12		ZV,	烯
_		66		\(\bar{b}\)						顺-1,2-二氯
		/V \ \							1	X.)

顺-1,2-一乘

XIII THE

ETA THE TOTAL PROPERTY OF THE PARTY OF THE P

		杏 与 评 价				19x	\\- '	7.73.	
	环境现状调	查与评价		3,7				73.	
	乙烯		(4)	-				X	
	反-1,2-二氯		D. H.		XVII.		10	20	
	乙烯 二氯甲烷				XII		94		
	1,2-二氯丙烷		(A)		>		1		DHI.
	1,1,1,2 四氯	117	K	11/25		XV	2.6		AR
١	1.1,2,2-四氯 乙烷					***)	1.6		
	四氯乙烯	-3			. **		11		
	1,1,1-三氯乙	J.X.R.	15-		MA		701	2/1	
	烷	X-'	117		100		, , ,		
	1,1,2-三氯乙 烷	4.					0.6		
	三氯乙烯		-:X				0.7		
	1,2,3-三氯丙		K				0.05		ZV.
	烷	\X	7	112		1 2	0.05	113	17
X	氯乙烯	12.		45			0.12	*)
WIN'	苯	*	71.1	<u> </u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	- (MX	
```	氯苯				//-		68	Win.	
KI)-	1,2-二氯苯		137-		112		560	KIP .	
	1,4-一刹本	.70.	12/1		1025		3.6		
	* 7 伝 *	XX					12 <b>0</b> 0		
	71-0/11				4		(X)	<u> </u>	
	1,2-二氯苯 1,4-二氯苯 乙苯 苯乙烯						_'		
						WID.			
1.0	X47	XXX	No.	( <del>)</del>		7/1/5			
<b>/</b> -		*IJ.W		*	<b>X</b> 1				

环	堷	现	狀	调	杏	与	评	价
٠,١,٠	ידלים	27	1//	ИН	<b>—</b> .		νı	171

环境现状调查 甲苯	E 5 17 101		j))-			1200	X 74 V.
间二甲苯+对二甲苯	177			XX.		570	
邻二甲苯	10-5			XX)		222	
硝基苯			×.	-		34	
- 苯胺 X 2 氯酚		X,				92 250	
<b>苯并[a]</b> 蔥	11	7	1 1/25		No.	5.5	— <i>b</i>
苯并[a]芘	10-5				XXX	0.55	
苯并[b]荧蒽						5.5	
苯并[k]荧蒽			$\Diamond$			55	
	\X\-\	117		11/25		490	
→ 「 [u、 n]	AN I			不"		0.55	
节并		A.KIT		1	.30		
[1,2,3-cd]芘			1/2/2/2			<b>(1)</b> 5.3	
萘	12		1-17		O/X	25	NA TOP
土壤质量	监测结果表明,厂区内	<b>小</b> 各监测站位土壤环境质	<b>质量总体较好,所监</b>	测的 49 项指标均	7低于《土壤	聚环境质量 建设	<b>足用地土壤</b>
污染风险管控	标准(试行)》(GB36600-	2018)中第一类用地筛选	值限值。	$\wedge$	<b>\</b>		.e.ll-
3/		DH. K.				大 ⁽⁾	10.

*II. The

后标。 从提出,

文用地上,

## 3.4.5 噪声环境质量现状调查与评价

WHITE WHITE IN THE PERSON OF T · 75·

(1) 戶环境质量现状监测

本次评价引用《福建(泉州)半导体高新技术产业开发区产业园规划环境影响报客书》

噪声质量监测数据,评价委托福建创投环境检测有限公司于2023年11月2年。

夜间噪声监测,引用晋江分园区工业园拟建污水外理一一据,监测点位、监测因子及监测域。 中的噪声质量监测数据,评价委托福建创投环境检测有限公司于2023年11月21~9日进 行昼夜间噪声监测,引用晋江分园区工业园拟建污水处理厂及周边声环境保护目标监

		人物三一九八		
	(1)声环境质量现	<b>大</b> 监测	A.	1
	本次评价引用《福	f建(泉州)半导体高部	新技术产业开发区产业园规划	J环境影响报 <b>生</b>
	中的噪声质量监测数技	居,评价委托福建创	l投环境检测有限公司于2023年	年11月 <b>2日~9</b> 日进
	行昼夜间噪声监测,	引用晋江分园区工业	k园拟建污水处理厂及周边声	环境保护目标监
	测数据,监测点位、』	<b>监测因子及监测频</b> 涉		4
	<u> </u>	表 3.16 声环均	竟监测站点一览表	
117	监测点位	噪声类型	坐标	监测频次
A THE WAY	N1 拟建污水处理厂旁	水境噪声	E118.461573°;N24.643679°	
-51/17	N2 白沙村	环境噪声	E118.458547°;N24.635206°	昼夜各测1次
	N3 园区东侧	交通噪声	E118.466299°;N24.640543°	<b>一 恒仅合侧 1 人</b>
1	N4 郭岑村	环境噪声	E118.463061°;N24.650929°	
		The second second	ON THE WAY AND THE	



图 3.8 噪声补充监测布点图

(2)噪声现状监测结果与分析 K-IEBAHII-

①评价方法

WAR THE TOTAL OF THE PARTY OF T 将环境噪声现状监测结果与《声环境质量标准》(GB2096-2008)中3类标准(昼间 65dB, 夜间 55dB)直接对照的方法进行。

②监测结果与分析

本次噪声现状监测及评价结果见表 3.17。

## 表 3.17 噪声现状监测及评价结果一览表

	* -			<b>2</b> 1 . 1		V /	
	监测结果	₹(dB(A))	<b>沙</b> 达标	情况	标准值	dB(A))	
监测点位	昼间	夜间×	昼间	夜间	昼间	夜间	
N11 伞都大道	61	52_	达标	达标	70	55	
N12 泉厦漳城 市联盟路	51	49	达标	达标	70	55	
N13 园区预留 区	50	46	达标	※	60	50	1
N14 白沙村	50	46	达标	达标	60	50	
N15 园区东侧	53	49	达标	达标	60	50	
N16 郭岑村	55	48	送标	达标	60	50	_
N17 东石四居	56	49	达标	达标	60	50	_
/ I/					1170		

从表 3.17 监测结果可知,本项日各监测点位噪声监测值均未出现超标现象,均符 合《声环境质量标准》(GB3096-2008)中3类标准要求,项目周边声环境质量较好。

## 3.4.6 海域水环境质量现状调查与评价

- (1)海水水质现状调查与评价
- ①监测点位及监测项目

本次评价引用《福建晋江经济开发区(五里园 年9月)中安海湾及围头湾海域海水水质及流积物质量监测数据,该评价委托厦门市政 南方海洋检测有限公司于2023年9月15日进行采样监测,共布设12个监测站位,具 体监测站位及监测项目见表 3.18 和图 3.9。

#### 表 3.18 海洋环境现状调查站位表

站位	采样点位坐标	监测项目
A1	E118°27′05.71″, N24°41′03.48″	水质
A2	E118°26′54.89″, N24°39′49.64″	水质
A3	E118°26′25.23″, N24°38′43.36″	水质
A4	E118°26'23.38", N24°37'32.02"	水质、生物质量
A5	E118 28'02.25", N24°36'41.74"	水质、生态、渔业资源
A6 👸	Ę118°26′27.70″, N24°36′23.76″	水质、生态、渔业资源
AHA	E118°25'32.70", N24°35'32.07"	水质、生物质量、生态、
A8	E118°30′23.77″, N24°36′01.29″	水质、生态、渔业资源
A9	E118°28′49.22″, N24°35′28.14″	水质、生态、渔业资源
A10	E118°26′57.98″, N24°34′37.56″	水质、生物质量、生态、

明度、悬浮物、DØ、COD、 盐氮、氨氮、活性磷酸盐、

		O KK.		. Al
环境现状	调查与评价		-51 MILL'S	· 77 ·
站位	采样点位坐标	监测项目	监测指标	<u> </u>
A11	E118°25′33.94″, N24°34′19.01″	水质、生态、渔业资源		
A12	E118°23′55,06″, N24°33′56.53″	水质、生态、渔业资源		W.
T1	E118°26'34.54", N24°38'52.35"	潮间带生物	Z.Y.	
T2	E118°26'39.79", N24°37'51.48"	潮间带生物		
T3/	E118°25'41.39", N24°37'04.59"	潮间带生物	V. X.	



图 3.9 海洋环境现状调查监测点位示意图

②监测分析方法

**楼**岛采集、贮存和运输方法及海水化学要素监测分析方法均严格按照《海洋监测 规定》(GB17378-2007)和《海洋调查规范》(GB/T12763-2007)的有关要求进行。海水水质的各项监测指标的分析方法见表 3.19。 质的各项监测指标的分析方法见表 3.19。

			***		>
			Ø-2	·银棚。1275年	
	环境现状记	周查与评价		KIND IN	• 78 •
	1 20-20 000	77.2. 371.01	表 3.19 海水水质分析方法一览表	<del></del>	
		检测项目和	检测标准名称及编号	主要检测仪器	方法检出限。
	77. 3	1000	《海洋监测规范 第4部分 海水分析》	SST-T001 紫外分	刀囚徑山队
	1	石油类	GB17378.4-2007 13.2 紫外分光光度法	光光度计	0.0035mg/L
	_		《海洋监测规范 第4部分 海水分析》	SST-T036 原子荧	- XX
	2	录 表	GB17378.4-2007 5.1 原子荧光法	光分光光度计	7×10 ⁻⁶ mg/L
	3	铜	ÆV.	17/1/2	0.0012mg/L
	<b></b>	铅	《海洋监测技术规程 第1部分:海水》铜、	SST-T325 电感耦	0.0007mg/L
大规模的	5	铬	铅、锌、镉、铬、铍、锰、钴、镍、砷、	SS1-1323 电恐柄 合等离子体质谱	0.0005mg/L
117	6	镉	铊的同步测定-电感耦合等离子体质谱法	仪	0.0003mg/L
	7	砷	HY/T 147.1-2013 5	~	0.0005mg/L
	8	锌	K.		0.0010mg/L
XIV	9	水温	~ )	SST-T395 表层水	,
1			17378.4-2007 25.1 表面水温表法	温计	
	10	<b>益度</b>	《海洋监测规范 第4部分海水分析》GB		/
			17378.4-2007 29.1 盐度计法	参数测定仪	
	N. S.	悬浮物	《海洋监测规范 第4部分 海水分析》GB 17378.4-2007 27 重量法	881-1239 東子	0.8mg/L
	~ <del>\\\</del>		《海洋监测规范 第4部分 海水分析》GB	CST-T307 水 盾 多	
1	12	pН	1.7378.4-2007 26 pH 计法	多数测定仪 一个数测定仪	/
		N. ha F	《海洋监测规范 第4部分 海水分析》》	WA .	
	13	溶解氧	GB17378.4-2007 31 碘量法	滴定管	0.32mg/L
	1.4	4 兴西岛	《海洋监测规范 第4部分 海水分析》	油户签	0.15/
	14	化学需氣量	GB17378.4-2007 32 碱性高锰酸钾法	滴定管	0.15mg/1
	15	活性磷酸盐	《海洋监测规范 第4部分 海水分析》GB	SST-T221 紫外分	0 001mg/L
		石 生 姓	17378.4-2007 39.1 磷铜蓝分光光度法	光光度计	by Ornig/L
	16	硝酸盐氮	《海洋监测规范 第4部分 海水分析》	SST-T221 紫外分	0.0007mg/L
		7/17/ <u>E</u> X	GB17378.4-2007 38.2 锌镉还原法	光光度计	0.0007IIIg E
,A	ν. 17	亚硝酸盐	《海洋监测规范 第4部分 海水分析》	SST-T221 紫外分	0.001mg/L
×1/2)	7		GB17378.4.2007 37 茶乙二胺分光光度法	光光度计	
AND	18	氨氮	《海洋监测规范 第4部分 海水分析》	<b>8ST-T221</b> 紫外分	0.005mg/L
WALLEY TO THE PARTY OF THE PART			GB17378.4-2007 36.1 靛酚蓝分光光度医	光光度计 CCT TOO1 些公司	
Alle A	19	硫化物	《海洋监测规范 第4部分 海水分析》 亚甲基蓝分光光度法 GB17378.4~2007 18.1	SST-T001 紫外可 见分光光度计	0.0002mg/L
. `		XVL	「本监分九九及云 GB1/3/8.4-200/18.1」 《海洋监测规范 第4部分 海水分析》 4-	· 光分九九及月	//-X/
	20	挥发酚	氨基安替比林分光光度法 GB	SST-T221 紫外分	0.00Y1mg/L
	20	\	17378.4-2007 19	光光度计	of This L
		\$13	《海洋监测规范 第 4 部分 海水分析》 透		<u>v</u>
	/12×7	透明度	明圆盘法 GB 17378.4-2007 22	SST-T104 基氏盘	/
	(3)7k	质评价标准及	Z).	N.	1
	1年10年10日		X)	4-	
1-15	计价	·标准:	<b>*</b>		
11275年					
		<b>Т</b>	,		
,			A. C.		
			XIV "		

刘荣

岸海域生态环境质量评价技术导则》(HJ442-2008)中第二类标准进行分项评价。

上海 (GB3097-1997)和《近 (HJ442-2008)中第二类标准进行分项评价。 (HJ442-2008)中第二类标准进行分项评价, (HJ442-2008)中的, (HJ

$$Si=Ci/Cs$$
 (3.4-9)

式中: Ci: 第 i 项监测值, mg/L; Cs: 海水水质标准, mg/L。

質监测值,mg/L。 
$$S_{DO,j} = \frac{|DO_f \cdot DO_j|}{|DO_f \cdot DO_g|} \quad (DO_f \cdot DO_j)$$
 
$$S_{DO,j} = DO_s / DO_j \quad (DO_f \cdot DO_j)$$
 
$$S_{DO,j} = DO_s / DO_j \quad (DO_f \cdot DO_j)$$
 
$$(3.4-11)$$
 
$$\mathbb{Z}$$
 解氧的标准指数:

$$S_{DO,j} = DO_s / DO_j \qquad (DO_j \leq DO_j)$$
(3.4-11)

式中: Spoi. 溶解氧的标准指数;

PO_j:溶解氧在j点的实测统计划表值,mg/L;

DOs: 溶解氧的水质评价标准限值, mg/L;

DO_f: 饱和溶解氧浓度、mg/L, DO_f=(491-2.65S)/(33.5+T)

S 为盐度,量纲为 1、T 为水温,单位为℃。

pH 的标准指数为:

$$S_{pH} = \frac{7.0 - pH_j}{7.0 - pH_{sd}} \qquad (pH_j \le 7.0)$$
 (3.4-12)

$$S_{pH} = \frac{7.0 - pH_{j}}{7.0 - pH_{sd}}$$
 (pH_j $\geq$ 7.0) (3.4-12)  $S_{pH} = \frac{pH_{j} - 7.0}{pH_{sd} + \sqrt{50}}$  (pH_j $\geq$ 7.0) (3.4-13) 限值; 限值。

式中: SpH, j: pH 值的指数;

pH_i: pH 值实测统计代表值

pHsd: 评价标准中 pH 值的下限值;

pHsu: 评价标准中 pH 值的上限值。

AHTHER IN THE PROPERTY OF THE PARTY OF THE P 水质参数的污染指数>1,表明该水质参数超过了规定的水质标准。

④水质现状调查结果

2023年9月评价海域海水水质调查结果见 大块 人

## 表 3.21 2023 年 9 月评价海域海水水质评价(Sij)结果一览表



2023年9月评价海域除1个站位无机氮(湾顶)含量符合第三类海水水质标准外, 其余评价因子所有调查站位均符合海水水质第二类标准,水质环境良好。根据《福建 省近岸海域环境功能区划》。2023年9月各调查站位均符合成属的功能区的管理要求。

# (2)海域沉积物现状调查与评价

引用《福建晋江经济开发区(五里园、安东园)规划评价跟踪评价》(2023年9月) 中于 2020 年 9 月 18 日~19 日的监测数据,共 10 分站点,具体见 3.22。

			衣 3.	22 2020	年リ月	母洋仉悦	以初明宜	<b>珀来一</b>	<b>范衣</b>	(m)	4
	站	有机碳	硫化物	铜	铅	//辞	镉	铬	汞	NO THE	石油类
	位	(×10 ⁻² )			\	监	测值(×10	<del>-6</del> )		不	
	1	0.987			147					1	
	1/42	0.910		Ý	72				-K-		
XI)	3	0.716							V		
<b>#</b>	4	0.507									
Marin	5	0.165					13	× .			
THE STATE OF THE S	6	0.924					147				
	7	0.065	N. S.				4				_1/5-
	8	0.054	<b>*</b>							In.	V
	9	0.723									
	10	0.512							1	<b>%</b>	
	- 47	Z, "/							V. I.		

监测结果表明: 2020 年秋季海域表层沉积物调查中, 汞、砷、铅、铜、锌、镉、 路、硫化物和有机碳含量均符為《海洋沉积物质量》第一类评价标准,评价海域内沉积物环境质量自好 K-White 积物环境质量良好。

## 4 环境影响预测与评价

## 4.1 施工期环境影响评价

## 4.1.1 项目建设施工期环境影响因素识别

大學 工内容包括对利用场地的平整、土建、附属设施的新建,设备安装等。结合实际 工情况, 还程可能造成的环境影响, 概括为下列几个方面:

- (1)建设期间,各类建材及土石方进出造成一定的扬尘,对周围大气造成
- (3)建设期间,各类建筑施工使用的机械设备噪声会对周围的声环境造成一定的影响;
- (4)施工过程中产生的建筑废料及施工人员的生活垃圾等;

项目施工期间环境影响因素汇总见表 4.1-1。

**※表 4.1-1 项目施工期环境影响因素识别一览表** 

		// \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	30 ·   3   -   3   -   3   3   3   3   3   3	<del>96.1K</del>
序号	环境要素	影响因素	影响特征	控制方式
1	大學环境	①运输道路扬尘、车辆尾气排放 ②物料堆存扬尘 ③物料拌合扬尘	短期,可逆性	粉尘:加强道路清扫、洒水和 对车辆清洗 车辆尾气无组织排放
<b>2</b> 2	水环境	①施工人员生活污水 ②施工废水 ③冲洗废水 ④基坑排水	_	生活污水利用临时化粪池进行后处理排入市政管网;施工废水和冲洗废水经隔油沉淀 怎尽量回用不外排
3	声学环境	①施工机 <b>械噪</b> 声 ②运输 <b>车辆</b> 噪声	短期,不可逆性	加强施工期间管理和开展施 工期间的环境监理工作
4	固体	①建筑废物 ②生活垃圾 ③挖方	短期,可逆性	生活垃圾由环卫部门清运处理;建筑垃圾用于道路填方;挖方回填

## 4.1.2 施工期环境影响因素分析

- (1)施工期大气环境影响分析
- ①运输道路扬尘

对整个施工期而言,施工产生的扬尘主要集中土石方运输以及在基础、土建施工阶段。 按起尘的原因可分为风力起尘和动力起尘,其中风力起尘主要是由于露天堆放的建材(如 黄沙、水泥等,本区域风速较大影响起尘因素明显)及裸露的施工区表层浮尘因天气干燥 及大风,产生风尘扬尘;而动力起尘,主要是在建林的装卸、搅拌过程中,由于外力而充 生的尘粒再悬浮而造成,其中施工及装卸车辆造成的扬尘最为严重 车辆行驶产生的扬尘占总扬尘的60%上。车辆行驶产生的扬尘,在完全干燥情况下,可按 下列经验公式计算:

$$Q = 0.123(\frac{V}{5})(\frac{W}{6.8})^{0.85}(\frac{P}{0.5})^{0.75}$$
(4.1-1)

V: 汽车速度, km/h;

W: 汽车载重量, ";

P: 道路表面粉尘量, kg/m²。

大學 通过上式计算,表 4.1-2 给出了一辆载重量为 10t 卡车通过一段长度为 1km 路面时 不同路面清洁程度、不同行驶速度情况下的扬尘量。结果表明,在同样路面清洁程度条件 车速越快,扬尘量越大;在同样车速情况下,路面浮沉越多,则扬尘量越大。采用限 场施工车辆的行驶速度及保持路面的清洁(增加路面湿度)是减少汽车扬尘的最有效 道路,路面相对较窄,大型运输车辆车速一般控制在15km/h

在不同车速和地面清洁程度的汽车扬尘量一览表

	` <u>`</u>			XI)	单	位: kg/辆·km
粉尘量	0.1	0.2	0.3	_ 0.4	0.5	1.0
车速	$\sqrt{(kg/m^2)}$	$(kg/m^2)$	$(kg/m^2)$	$(kg/m^2)$	$(kg/m^2)$	$(kg/m^2)$
5(km/h)	0.0511	0.0859	0.1164	0.1444	0.1707	0.2871
10(km/h)	0.1021	0.1717	0.2328	0.2888	0.3414	0.5742
13(km/h)	0.1532	0.2576	0.3491	0.4332	0.5121	0.8613
25(km/h)	0.2553	0.4293	0.5819	0.7220	0.8536	1.4355

如果施工阶段对汽车行驶路面勤洒水(每天4~5次),使空气中粉尘量减少70%左右, 可以收到很好的降尘效果。酒水的试验资料见表 4.1-3。当施汉场地洒水频率为 4~5 次/d 时,扬尘造成的TSP污染距离可缩小到20~50m范围内。项目场地与附近敏感点的距离。 均在 500m 以上, 场地施工扬尘不会对敏感点造成污染影响。

表 4.1-3 施工阶段使用洒水降尘试验结果一览表

距路边	距离(m)	5	20	50	1200
TSP 浓度	不洒水	10.14	2.810	1.15	0.86
$(mg/m^3)$	洒水	2.01	1.40	0.68	0.60
		X. N.			

#### ②堆场扬尘

施工期扬尘的另一个主要原因是露天堆场和裸露场地的风力扬尘。由于施工需要,一 些建筑材料需露天堆放,一些施工作业点表层土壤需人工开挖和临时堆放,在气候干燥又 有风的情况下,会产生扬尘,其扬尘量可按堆场起尘的经验公式计算:

$$Q=2.1(V_{50}-V_0)^3e^{-1.023W}$$

式中, Q: 起尘量, kg/t·a;

V50: 距地面 50m 处风速, m/s;

起尘风速与粒径和含水率有关,采取的有效措施是,减少露天堆放和保证一定的含水 率及减少裸露地面。粉尘在空气中的扩散稀释与风速等气象条件有关,也与粉尘本身的沉

型間 12 15 15 降速度有关。以土为例,不同粒径的尘粒的沉降速度见表 4.1

<b>必表</b> 4.1-4	4 不同粉	径尘粒的	沉降速度-	一览表
AZENX TIT	*	工工作出		ソレルス

			·		1-6-	- v ·		
序号	粉尘粒径(µm)	10	20	30	40	50	60	70
1	沉降速度(m/s)	0.003	0.012	0.027	0.048	0.075	0.108	0,147
2	粉尘粒径(μm)	80	90	100	150	200	250	350
3	◇沉降速度(m/s)	0.158	0.170	0.182	0.239	0.804	1.005	1.829
4	粉尘粒径(μm)	450	550	650	750	850	950-	1050
5	沉降速度(m/s)	2.211	2.614	3.016	3.418	3.820	4.222	4.624

由表 4.4 可知,尘粒的沉降速度随粒径的增大而迅速增大。当粒径为 250μm 时,沉降 速度为 1.005m/s, 当尘粒大天 250µm 时,主要影响范围在扬尘点下风向近距离范围内, 对外环境产生影响的是一些微小粒径的粉尘。

#### ③施工扬尘

施工扬尘影响范围主要在工地边界范围外 100m 内, 在扬尘点下风向 0~50m 为重污 染带,50~100m 为较重污染带,100~200m 为轻污染带,200m 以外影响甚微。

## ④ 灰土拌合产生扬尘污染

施工采用商品混凝土,施工场地也会有站拌设备。根据有关单位对混凝土拌合站实地 监测表明, 距拌合站下风向 50m 处 TSP 浓度可达 1.367mg/m³, 超过二级标准; 下风向 100m 处 TSP 浓度为 0.619mg/m³, 可以满足《环境空气质量标准》(GB3095-2012)的二级标准。

考虑到本项目距离外围的肖下村、龙下村、安海镇区和农石镇区等居民点较远,故不 采取进一步预测方法分析扬尘对居民点的粉尘贡献量。

## ⑤运输车辆等施工机械产生尾气

项目使用装载车辆、挖掘机、推土机一般使用柴油,柴油燃烧产生的废气会影响周围 大气环境, 废气污染影响范围在常规气象条件下, 最大不超过排气孔下风向轴线几十米远 距离。一般情况下,在工地内运行的机械及载重卡车的废气污染影响范围仅局限于施工工 地内,不影响界外区域。但当车辆进出工地及在外界道路上行驶时,可能会影响道路两侧 的有限区域。由于在整个施工期燃油机械和运输车辆的使用数量有限,而且作用时间较短, 施工场地较为宽阔,该种类废气对敏感目标和当地大气环境质量的影响较小。

## (2)施工期水环境的影响分析

施工期产生的废(污)水主要是施工人员的生活污水和运输车辆、机械设备的冲洗废水 混凝土养护废水、基坑开挖地下涌水、雨季地面积水、基坑泥沙水等。经估算,施工期生 活污水和施工废水产生量分别为 3t/d、8t/d。其中施工废水经隔油沉淀池预处理后回用, 不外报。项目施工过程产生的生活污水利用依托现有厂内设施。项目施工期的施工废(污) 水不会对水环境造成污染影响。在施工场地应采用设置临时冲洗车辆轮胎的专用沉淀池 (进出场地门口处)、施工区养护及水沉淀池、基坑涌水沉淀池等,并做好施工再利用。在 雨季施工,基坑四周需要做好围挡,避免雨水进入基坑,场地四周要做好边沟开挖等水土

保持工作,避免雨水进入施工场地,对场地造成冲刷。

- (3)施工期噪声影响分析
- ①噪声源种类及分布

大地 施工期的噪声主要可分为机械噪声、施工作业噪声和施工车辆噪声。机械噪声主要由 施工机械所造成,如挖土机械、打桩机械、混凝土振捣棒和电锯等,多为场地、多点组合 声源; 施工作业噪声还有一些零星的敲折声、装卸车辆的撞击声、拆装模板的撞击声等, 为瞬间噪声, 施工车辆噪声。在这些施工噪声中对声环境影响最大的是机械噪声, 但往 往施工作业噪声比较容易造成。分,特别是在夜间,这主要是由于在夜间一般高噪设备。 但本项目场地周边距居民民住点较远,且位于工业区内,引起噪声纠纷问题的可能性较小。 本项目主要施工机械的噪声源强见表 4.1-5。

∠ 表 4.1-5 主要施工机械设备的声压级一览表

序号	施工机械	测量声级(dB)	测量距离(m)
1	铲土机	75	1
2 1/2	自卸卡车	70	1
× 3×	混凝土搅拌机	79	<i>July</i> 1
4 × × 4	混凝土振捣器 🐼 🕻	80	x15 7 1
5	大型运输车辆	80~95	1

在多台机械设备同时作业时,各台设备产生的噪声会产生叠加。根据类比调查,叠加 后的噪声增值约3~8dB, 般不会超过10dB。由表6.5 可知,在这类施工机械中,混凝 土振捣器、设备安装使用的电焊机等施工设备的声压级较高,声压级均在80dB以上。

场地施工过程中各个阶段的主要噪声源都不太一样,其设备声压级也不一样, 体就各个阶段(土石方阶段、基础阶段、结构阶段分别开展分析。

土石方工程阶段的主要噪声源是挖掘机。推土机、装载机及各种运输与 源特征值见表 4.1-6。

表 4.1-6 土石方阶段主要设备噪声级-

序号	设备名称	声级(dB)	距离(m)
1	翻斗机	85	3
2	推土机	86	5
3	装载机	90	5
4	挖掘机	84	5

基础施工阶段的主要噪声源是各种打桩机以及一些钻机、风镐、空压机等。 基本是固定声源。基础施工阶段的噪声源特征值见表 4.1-7。

表 4.1-7 基础施工阶段主要设备噪声级一览表

			*. *X
小房号	设备名称	声级(dB)	距离(m)
1	吊机	70~80	15
2	平地机	86	15
3	风镐	103	1

		7.7	
4	钻机	85	3
5	<b>炎</b> , 空压机	92	3

结构施工阶段是建筑施工中周期最长的阶段,施工设备种类较多。主要声源有各种大型运输设备(车辆)、模板电锯、结构工程设备、吊机、焊机及一些辅助设备等,主要噪声特征值见表 4.1-8。

表 4.1-8 结构施工阶段主要设备噪声级一览表

	2.		
序号	设备名称	声级(dB)	距离(m)
1	吊车等	70~80	15
2	振捣棒	80~90	2
3	水泥搅拌机	75~95	4
4	电锯	103	1

设备安装阶段占总施工时间比例较长,但声源数量较少,主要噪声源包括砂轮机、电钻、吊车、切割机等,主要噪声源特征值见表 4.1-9。

表 4.1-9 设备安装阶段主要设备噪声级一览表

序号 //	设备名称	声级(dB)	距离(m)
K	电焊机	80~85	1
2	吊车	70~80	15
3	木工圆锯机, 《	93~101	x 1
4	电钻	62~82	10
5	切割机	91~95	1

以上表述的各施工设备噪声源特征值表可以看出,建设期间使用的建筑机械设备和种类较多,设备声压级较高,下面针对声压级较大的施工机械设备的噪声随距离衰减情况。

## ②噪声影响分析

a.单台设备不同距离处噪声强度

评价只考虑距离扩散衰减影响,采用以不模式预测单台设备在不同距离处的声压级:

$$L_2 = L_1 - 20\lg(r_2/r_1) \tag{4.1-3}$$

式中, $\mathbf{r}_1$ 、 $\mathbf{r}_2$ : 距声源的距离, $\mathbf{m}_2$ 

 $L_1$ 、 $L_2$ :  $r_1$ 、 $r_2$ 处的噪声值,dB。

施工机械和运输车辆噪声以单点源或多点源在施工区内分布,噪声源强取决于施工方式、施工机械种类及运输量,各单独噪声源强衰减情况见表 4.1-10。

表 4.1-10 单台设备不同距离处噪声强度一览表

序号	机械名称	距机械不同距离的噪声级(dB)					MIV
万 5	70000000000000000000000000000000000000	10m	20m	30m	50m	100m	150m
1 🕺	挖土机	86	80	76.5	72	66	62.5
2.4	推土机	84	78	74.5	70	64	60.5
1325	打桩机	89	83	79.5	75	69	65.5
4	搅拌机	76 🚜	70	66.5	62	<u> 36</u> 1	52.5
<b>\</b> 5	压路机	79	73	69.5	65	59	55.5
6	大型载重车	82	76	72.5	68	62	58.5

XIIX

## b.多台施工设备噪声影响分析

施工机械噪声主要属中低频噪声。在施工现场,实际有多少台设备同时作业未有定数,因而评价仅对主要施工机械进行噪声源强叠加,预测叠加后噪声源强经距离衰减在不停距离的噪声强度。某点的声压级叠加公式如下:

$$L_{P_{E}} = 10 \lg \left( 10^{L_{P_1}/10} + 10^{L_{P_2}/10} + \dots + 10^{L_{P_n}/10} \right) \tag{4.1-4}$$

式中,L_{P &}:叠加后的总声压级,dB

LP1: 第一个声源至某一点的声压级, dB;

Lp2: 第二个声源至某一种的声压级, dB;

L_{Pn}: 第 n 个声源至某一点的声压级, dB。

多个噪声源叠加后在不同距离处的总声压级见表 4.1-11。

## 表 4.1-11 多台施工机械设备总声压级距离衰减预测情况一览表

. 115			1000					
距离(m) 🎤 🗸 0	20	40	60 / 80	100	150	200	300	400
727 3 (111)			W/A	100	100		200	
噪声值 <b>dB</b> 105.2	79.2	73.3	70.0 68.5	66.5	63.0	60.5	57.0	54.5

依据上表预测结果,对照《建筑施工场界环境噪声排放标准》(GB12523-2011)昼间施文噪声超标出现在距声源60m范围内(标准值≤70dB);夜间施工噪声超标情况出现在400m范围内(标准值≤55dB)。而居民点均在1km范围外,不会受到项目场地施工噪声的影响。

## (4)施工期的固体废物影响分析

施工期间的固体废物主要是施工过程中产生的建筑垃圾、弃土及施工人员的生活。垃圾,建筑垃圾主要为施工建筑模板、废钢料、废包装物及建筑碎片、水泥块、砂石子、废木板、废管材等固体废物。施工人员生活垃圾统一收集由当地环卫部门收集运输处置。采取有效的固体废物处置措施后,施工期不会产生固体废物环境影响。

## 4.2 运营期环境影响预测与评价

#### 4.2.1 地表水环境影响评价

(1)本项目对区域污染物排放总量削减的意义

项目处理规模为2万m³/d,设计服务范围为泉州半导体高新区晋江分园区工业园。服务区内收集的废(污)水经处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A排放标准后排海,避免了废(污)水因直接排放而造成更大的环境污染问题,本项目的建设削减了区域水污染物排放量,对区域污染物总量的削减起到积极作用。

## (2)尾水排放对纳污海域的影响

根据《深沪污水处理厂、泉荣远东污水处理厂排海工程(海域段)变更项目环境影响报告书》对纳污海域的预测结果: 28万t/d尾水正常排放时,COD_M浓度增量最大值为0.40mg/L,叠加背景值后COD_Mn最大浓度为1.9mg/L,小于一类海水水质标准COD_Mn限值(2mg/L);总铬浓度增量最大值为0.00046mg/L,叠加背景值后总铬最大浓度为

*ITH

张腊思江河 0.00146mg/L,小于二类海水水质标准总铬限值(0.1mg/L),AOX浓度增量最大值为 0.007mg/L,小于海洋生物安全浓度(0.03mg/L);砷浓度增量最大值为0.00013mg/L,叠加背 景值后砷最大浓度为0.00313mg/L,小于二类海水水质标准砷限值(0.03mg/L);氰化物浓 度增量最大值为0.000065mg/L,叠加背景值后氰化物最大浓度为0.001065mg/L、于二 类海水水质标准氰化物限值(0.005mg/L);铜浓度增量最大值为0.00085mg/L,叠加背景值 后铜最大浓度为0.00185mg/L,小于二次海水水质标准铜限值(0.01mg/L):铅浓度增量最 太值为0.00018mg/L,叠加背景值后铅最大浓度为0.00048mg/L,小于二类海水水质标准 铅限值(0.005mg/L);镍浓度增量最大值为0.000085mg/L,叠加背景值后镍最大浓度为 0.000785mg/L,小于二类海水水质标准镍限值(0.01mg/L);因此,以上污染物超二类海水 水质影响面积在一个计算网格内(625m²),COD_{Mn}、总格、AOX、砷、铜、铅、镍、氰 化物等污染物排放对周围海域环境影响较小。

无机氮浓度增量最大值为0.22mg/L,叠加背景值后无机氮最大浓度为0.39mg/L,大 于二类海水水质标准无机氮限值(0.3mg/L)、潮超二类海水水质影响面积约0.73km²,大 潮超二类海水水质影响面积约0.71km²,15天超二类海水水质影响包络面积约0.87km²。

活性磷酸盐浓度增量最大值约为0.011mg/L,占活性磷酸盐现状水质(0.032mg/L)的 36.67%。在局部区域活性磷酸盐有一定增量,但污水处理厂发区域减排工程,工程的 建设总体上将削减活性磷酸盐的排放约85%(以污水处理程度计)。从区域上,深海排放 工程将改善晋江附近海域整体水质状况。

根据数模预测结果,该环评确定的混合区为以排放口为圆心,以950m为长半轴 以460m为短半轴的椭圆,面积约1.37km²,该范围内水域的水质不执行任何水质标准。

### (3)地表水环境影响自查表

工	作内容	XXX	自查项	(I
6.	影响类型	水污	染影响型☑; 水	K文要素影响型D
N.	小环児休			5水的自然保护区□; 重要湿地□; 重点 生生物的自然产卵场及索饵场、越冬场
影响		和洄游通道、天然渔场等渔		
彩明识别	影响途径	水污染影响型	型	水文要素影响型
W/7/1		直接排放□;间接排放		水温□;径流□;水域面积□
	21.7.7.2	持久性污染物☑;有毒有害	污染物□;非持	水温□:水位(水深)□:流速□:流量>:
	影响因子	久性万染物⊿; pH值⊿; 养化☑; 其他□	热污染□; 富富	水温□;水位(水深)□;流速□;流量0; 其他□
	价等级XX	水污染影响型	민	水文要素影响型
1	· 们 守级 ' \	一级□; 二级□; 三级Ai	□; 三级B <b>Ø</b>	一级口;二级口;三级口
	(H)	调查项目		数据来源
Di.	区域污染	已建☑;在建□;拟建□;		排污许可证☑; 环评☑; 环保验收□;
现状调查	, 源	其他口	海口	既有实测□;现场监测☑;入河排放口数据□;其他□
	受影响水	调查时期		数据来源
	体水环境	丰水期□; 平水期□; 枯水其	胡□;冰封期□	生态环境保护主管部门□;补充监测
	质量	春季□;夏季☑;秋季☑;	冬季□	☑; 其他□

			A HALL CONTRACTOR OF THE PARTY	
			2价 . 89.	
	环境现	状调查与词		K-100
	エ	作内容	自查项目	♠ `
		区域水资源开发利用状况	未开发□; 开发量40%以下□; 开发量40%以上□	KAN'
		水文情势	事水期□; 平水期□; 枯水期□; 冰封期□ 水 行 立 贷 郭 门□, 孙 云 收 测 4 、	
	_	调查》	每子□; 友子□; ベ子□; ベ子□ 此 川 叶	
		补充监测	車水期□; 平水期□; 枯水期□; 冰封期□ 春	
关系 ^{设度}	K-K'	评价范围	季□; 夏季□; 秋季□; 冬季□	
		评价因子	( ) 河流、湖 <b>库</b> 河口: I类□; II类□; IV类□; V类□	XXXX
K XX	-	评价标准	近岸海域、第一类□;第二类□;第三类☑;第四类□ 规划年评价标准( ) ★水期□;平水期□;枯水期□;冰封期□春季□;夏季□;秋季☑;冬季□	3-61
<b>1</b>	}	1 N 81 2/1	水环境功能区或水功能区、近岸海域环境功能区水质达标状况☑:达	
	现状 评价	1115	标□;不达标□ 水环境控制单元或断面水质达标状况□:达标□;不达标□ 水环境保护目标质量状况□:1返标□;不达标□	
	<b>/</b>		对照断面、控制断面等代表性断面的水质状况□:达标□;不达标□	
	~ KX-7/		底泥污染评价□ 水资源与开发利用程度及其水文情势评价□ 水工原东是□ 万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万	
K	7		水环境质量回顾评价。 流域(区域)水资源(包括水能资源)与开发利用总体状况。生态流量管理	
			要求与现状满足程度、建设项目占用水域空间的水流状况与河湖演变状况口	
		预测范围 预测因子	河流:长度( )km; 湖库、河口及近岸海域:面积( )km² ( )	
	影响	预测时期	丰水期□; 平水期□; 枯水期□; 冰封期□; 春季□; 夏季□; 秋季□; 冬季□ 设计水 或条件□	
	预测		建设期口;生产运行期口;服务期满后口正常工况口;非正常工况口;污染控制和减缓措施方案口区(流)域环境质量改善目标要求情景口	
		<b>新测方</b> 注	数值解□:解析解□;其他□	
. 27	(),	水污染控	导则推荐模式□: 其他□	<b>×</b>
×I)	N .	制和水环	区(流)域水环境质量改善目标口;替代削减源口	
1/1/2 A 1/1		缓措施有 效性评价	- TANKE IN	1-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1
N/A			排放口混合区外满足水环境管理要求□	1
	g, ,	X	排放口况台区介阙之小外况自任安水□ 水环境功能区或水功能区、近岸海域环境功能区水质达标☑ 满足水环境保护目标水域水环境质量要求□	
	影响 评价	XI	水环境控制单元或断面水质达标□ 112	
	·	水环境影	满足重点水污染物排放总量控制指标要求,重点行业建设项目,主要污染物排放 满足等量或减量替代要求□	
		响评价	满足区(流)域水环境质量改善目标要求□ 水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值影响评	
	个		价、生态流量符合性评价□ 对于新设或调整 <b>从河(</b> 湖库、近岸海域)排放口的建设项目,应包括排放口设置的	
ALL TO THE SECOND SECON	`		环境合理性评价。 满足生态保护红线、水环境质量底线、资源利用上线和环境准入清单管理要求□	
WIN'			四八上心以上人、小小儿火生风风、火你们几上次中小况住八月十日生女小山	
		$\wedge$		
		, (X)	*/	

			DK.	X-Y-			(1)	
环境现	1状调查与评	<b>平价</b>				- 51/11/13-1	• 90	• =
エ	作内容			自查工	页目 💉	7		
	污染源排	污染物名	称		和放	量/(t/a)	排放浓度/(mg/L)	
	放量核算	(COD/氨	氮)		(365	(/36.5)	(150/5)	
	替代源排	污染源名称 排污许可证	E编号	污染物名称	排放	量/(t/a)	排放浓度/(mg/L)	V
	放情况	_ (/)		(/)		(/)	(/) ////	_
	生态流量	生态流量:一般水期(/)	m ³ /s;	鱼类繁殖期	(/)m ³ /s; ‡	其他(/)m³/s	-:X'	_
	确定	生态水位:一般水期(/)	m;鱼	之类繁殖期(/):	m; 其他(/	/)m	AK.	
	环保措施	污水处理设施☑;水文 工程措施☑;其他□ 。	减缓i	没施□;生态:	流量保障	没施□;区均	或削減□;依托其何	也
	1	工作相心图,并心口	1/2/	 环境质量	<u>}</u>			_
防治		监测方式	<i>*</i> 手动		<u>-</u> 无监测☑	<b>手动刀</b> :	自动☑; 无监测□	_
措施	监测计划	监测点位	1 7 77	(/)	<u>&gt;C™ (V1 € )</u>		1、总排放口	_
		监测因子		(/)			体见报告书表8.2	_
	污染物排 放清单	Z K	1	()	ZV.			_
	价结论	可以接受☑;不可以接			N. W.			_n
"	22 4 4 4 4	/ 2 1 11 11 11 11 11 11 11 11 11 11 11 11	TF 60	夕二九十十十	カナカウ		•	_

## 4.2.2 地下水环境影响分析

(1)影响识别

\$项目对收水范围内的生产生活废水统一集中处理,废水集中、水量大,主要的

表 5.4-2 本项目主要的地下水污染源及污染途径 览表

序号	污染源	污染递
1	废水池、污泥浓缩池	池底或池壁渗漏
2	废水收集管道	废水管道破裂,通过周围土壤污染地下水
3	水处理药剂仓库	水处理药剂泄漏,通过仓库地面渗漏地下
4	加药间	水处理吃剂泄漏,通过地面渗漏地下
5	一般工业固体废物暂存场所 (污泥)	污泥浓缩池、污泥压滤作业区地面、暂存场所底部、围堰内壁渗漏地下
6	化验室	实验方品、清洗废水泄漏,通过地面渗漏地下

发生上诉渗漏事件可能导致地下水污染的特征因子为 COD、氨氮。

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)本项目所属的地下水环 境影响评价类别为I类。

项目拟选厂址位于区域地下水流向的下游,地下水环境敏感程度属于不敏感,根 据《环境影响评价技术导则 地下水环境》(HJ610 2016)表 2 判定本项目地下水评价等级为二级。

## (3)区域地下水水文地质

根据《福建省晋江地下水资源调查评价报告》(福建省闽东南地质大队 利局,2004年)的相关调查结果,晋江境内地下水的赋存条件、含义特征及富水程度,

本项目拟选厂址所属区域为松散岩类孔隙水。区域的水文地质图见图 5.1。

①地下水类型及含水岩组概况

松散岩类孔隙水含水层由第四系不同时代的海积、海陆交互堆积、冲积、冲洪积、风积等堆积物组成,面积 225.65km²,结构松散,渗透性强,径流快,地下水类型为孔隙潜水,局部为微承压水。按其矿化度可分为淡水、微咸水~咸水。

a.淡水

评价区域地表主要由第四系松散堆积的风积、冲洪积层及人工素填土组成,局部 由海陆交互堆积和海积层组成、面积 84.6km²,占松散岩类面积的 37.5%。风积层主要 分布于深沪、金井,下部为冲洪积层、海积淤泥层,厚度 5.0~10.0m,冲洪积层分布 在溪沟两侧,山前地带,一般厚度<15m。冲洪积含水层岩性主要为细砂、含泥细砂、 中细砂、粉质粘土、水位埋深 1.1~4.5m,局部达 8.8m,民井涌水量 12.5~28.9m³/d, 民井渗透系数 0.358~2.686m/d,钻孔涌水量 17.19~126.23m³/d,富水性以贫乏为主, 龙湖、深沪、安海局部地段中等富水。

♠ 截水~微咸水

主要分布于晋东平原、深沪湾及安海~东石沿海一带,面积 141.05km²,富水性贫乏~中等,晋东平原面积约 80km²,上覆长乐组海积淤泥质粘土、厚度 10.78~18.42m,含水层以粘砂土、淤泥质细砂为主,厚度 1.95~5.28m,局都有薄层砾卵石,微承压,与风化层混合抽水,单孔日涌水量 20.74~116.64m³,渗透系数 6.9m/d,水位埋深 0.62~2.38m,平原因远距河流,处在晋江入海口,周边补给和垂直渗透甚微,地下水交替缓慢,淡化作用十分微弱,矿化度 7.94~13.91g/L,为 Cl~Na 型极硬的中酸性水、水质微咸~咸,无开采意义。本项目所在的工业园即属于微咸水。

②)地下水的补给、径流、排泄条件

境内地下水的赋存、分布和补给、径流、排泄条件受地形地貌、地层岩性、地质构造、水文气象、植被等诸多因素的综合制约,各因素在不同区域内作用不尽相同。

松散岩类孔隙水,分布于平原地带或溪沟两侧,以大气降水补给为主,近台地和基岩部分,接受风化带孔隙裂隙水和基岩裂隙水的侧向补给。地下水水力坡度小,径流缓慢,水位埋藏较浅,斜交于河流向下游或大海排泄。

③地下水位动态变化

境内的地下水动态与大气降水、地形地貌、岩性特征等诸因素密切相关

磁化、内坑、东石、水和、英林、龙湖、安海、深沪、青阳等地的红土台地、风化带孔隙裂隙水,水位动态受大气降水影响较明显,随季节变化较大,其变化幅度受地形条件控制,不同季节变化也不同。根据以前的资料,位于地形高处的民井枯水期和丰水期的水位变化幅度较大,一般在3~6m,而2004年的调查显示(2003年至2004

XIV XX

年上半年的降水较少),地下水位变化在 5~12m,局部民并已干涸,调查的 556 个民井中,干涸的(井深在6~21.0m)有 37 个,占 6.7%,接近干涸(井中储水净高度<1.5m)有 140 个,占 25.2%。位于地形低处的民井水位变化幅度较小,一般为 1~2m。

松散岩类孔隙水,分布溪流两侧及平原河口地带,地下水水位随季节变化幅度较小,枯水期与丰水期比较,一般为 0.5~1.5m,调查中发现,局部地段变幅在 10m 左右,地下水位呈负海拔标高,呈降落漏斗状,将可能导致海水或污水入侵。

④地下水水位变化现状及过量开采区域

地下水的水质、水位动态变化,随着工业企业的迅猛发展、用水量的日益增多,对环境的影响有日渐严重趋势。且地下水水量和地下水位动态变化是同步的。根据本次的区域水文地质调查和民井水位的测量资料显示。晋江市地下水位低于15.0~21.0m(局部呈负海拔标高,呈干涸、半干涸状态)的地段有池店的溜石~高坑、浯潭~池店,磁灶的钱坡~洋尾~三吴,磁灶的后山、瑶琼~大宅一带,罗山的塘市~后洋、罗山的社店,安海的可慕~西畲~梧埭,东石的肖下~龙下~永坑,永和的周坑~巴厝、马坪~永和,英林的镇区、下伍堡。尤其是英林镇区周围3~5km2面积内,民井全都干涸。还有一些乡镇的局部地带,地下水位埋深也很深,在10.0~15.0m之间。

在这些区域内,居民饮水都有点困难,而为了生存需要,也都在开发深井,进一步降低地下水水位,形成恶性循环。特别在沿海(与海积地层交汇)地带的安海可慕~西畲~梧埭、东石的肖下~龙下~永坑、英林的下伍堡、池店的溜石~高坑、浯潭~池。店、罗山的塘市~后洋一带,地下水位埋深已部分出现负海拔,导致外侧的海水、咸水渗透入侵趋势;且经几百万年作用已被淡化的海陆交互接触地带的淡水返咸、缩小了淡水区域面积,恶化了地下水环境。从而使可供开采的陆域面积进一步缩小,更加剧了地下水可采水量与开采量的矛盾。当然,淡水返咸是一个渐进的过程。

#### (4)厂区地下水水文地质

本场地地下水主要为赋存于①杂填土层孔隙中的潜水,主要受大气降水垂向补给, 其水位动态受季节影响变化较大,水量变化较大。该层土质、成分及均匀性差异较大, 渗透性差异较大。

赋存于"④中砂、⑤残积砂质黏性土、⑥全风化花岗岩、⑦砂土状强风化花岗岩、⑧碎块状强风化花岗岩"中的地下水为承压水,为同一含水层。其中: ④中砂为孔隙承压水,透水性及富水性均较强,补给来源主要为地下含水层侧向径流及上部含水层垂向补给。赋存于"⑤残积砂质黏性土、⑥全风化花岗岩、⑦砂土状强风化花岗岩、⑧碎块状强风化花岗岩"为裂隙承压水。透水性及富水性均较弱,补给来源主要为地下含水层侧向径流及上部含水层垂向补给。本次勘察采用套管隔离法于 ZK37、ZK42孔进行水位观测,测得承压水位埋深在 8.20~9.50m 之间,标高-3.11~-4.28m。

XIIX

场地内①杂填土属弱~中等透水层,弱富水层;②淤泥、③粉质黏土属弱~微透水性;④中砂属强透水层性,富水性较强;⑤残积砂质黏性土~⑦砂土状强风化花岗岩属弱透水性,富水性较弱;⑧碎块状强风化花岗岩的导水性和富水性主要受构造裂隙的特征所控制,差异较大且具各向异性,但总体水量不大。

勘察期间通过钻孔测得的地下初见水位埋深为 1.60~2.10m, 在钻孔施工完成 24 小时后进行水位测量, 测得地下水稳定水位埋置深度为 1.30~1.80m(标高为 3.27~3.89m)。 根据地区经验, 在雨季, 特别是暴雨天气, 地下水位可能会上升, 本场地地下水水位年变幅为 1.00~2.00m。

根据该区域的水文地质资料及邻近场地的水文地质调查,拟建场地近 3~5 年最高水位相当于黄海高程约 4.00m,场地历史最高水位相等于黄海高程约 4.50m。

## (5)地下水开发利用现状

地下水作为晋江沿海地区广大农村居民重要的水源。近些年,随着自来水厂的建设,广大农村居民开始逐渐趋向于以自来水为主要的饮用水源。当前,经过对距厂区4km/范围内的主要敏感城镇调查发现,离厂区较近的城镇是东石镇,其主要敏感村庄包括有白沙村、郭岑村、麦园村、檗谷村等。据调查,目前周边村庄自来水已通。根据晋江市自来水普及工作的进展近况,目前该项目周边的居民都已饮用上自来水,不再以地下水作为主要饮用水源,多数居民利用地下水作为生活清洁用水。

## (6)地下水质量现状

根据本报告书环境质量现状调查可知,项目所在区域等水井各项监测因子均满足《地下水质量标准》(GB/T14848-9)中III类要求,评价区地下水质总体良好,具体可见报告书第四章相关内容。

- (7)地下水环境影响预测
- ①预测因子

根据本项目的特点,本次地下水评价选取"COD、氨氮"作为预测因子。

#### ②预测时段

## ③情景设置

本项目主要构筑物根据 GB18597 设计地下水防渗措施,本评价仅为非正常工况情 最进行预测。

#### 4)预测源强

本次非正常工况情景设置为: 污水处理构筑物因地表沉降等原因出现裂缝,防渗

, Tix

工程起不到防渗作用,仅有自然防渗层(素填土渗透系数数3.79×10⁴m/s)。

上海1017年用,仅有自然防渗层(素填土渗透系数为 3.79×10⁴m/s)。 假设,项目污水构筑物(A²/O 池)池底出现裂缝,此常运行时,池内的水位高度为污水中 COD 浓度小于 500mg/L、氨氮小于 35mg/L、六价铬小于 0.5mc/r 考虑池底自然防渗层的防渗作用。底上2011年 5m, 污水中 COD 浓度小于 500mg/L、氨氮小于 35mg/L、六价铬小于 0.5mg/L。

目废水源强为 356m³/d, COD 泄漏源强为 178kg/d、氨氮为 12.46kg/d、总铬为 0.178kg/d。

⑤预测方法 本次评价采用接解析法进行影响预测,预测污染物转移趋势。预测模式采用导则 瞬时注入示踪剂,"面瞬间点源"模式,具体模式为:

$$C(x, y, t) = \frac{m_t}{4\pi M n \sqrt{D_L D_T}} e^{\frac{xu}{2D_L}} \left[ 2K \sqrt{\beta} - W(\frac{u^2 t}{4D_L}, \beta) \right]$$

$$(5.2-2)$$

$$\beta = \sqrt{\frac{u^2 x^2}{4D_L^2} + \frac{u^2}{4D_T^2}}$$
 (5.2-3)

mt: 单位时间注入的示踪剂质量, kg;

u: 水流速度, m/d:

n: 有效孔隙度, 无量纲;

DL: 纵向 x 方向的弥散系数, m²/dx

π:圆周率;

 $K_0$ (β): 第二类零阶修正贝塞尔函数;

	15.71						
	预测时段	CC	)D	氨	氮	六份	絡し
序号	1 (d)	超标距离	超标范围	超标距离	超标范围	超标距离	超标范围
(K))	- (u)	(m)	$(km^2)$	(m)	$(km^2)$	(m)<	(km ² )
NA.	100	161	0.01725	161	0.01725	MZ	0.0075
1 2	200	245	0.03375	246	0.03375	X182	0.0165
3	标准限值	3.0(n		0	.2	0.0	05

通过表 5.2-4 可知, COD 因子预测结果: 在发生污染事故后 100 天, 泄漏源地下

水下游 COD_{Mn}类超标严重(限值≤3mg/L),最远超标范围在约距泄漏源 161m,超标面积为 0.01725km²; 200 天最远超标范围在约距泄漏源 245m(已进入滞洪渠区域),超标面积为 0.03375km²。

氨氮预测结果:在发生污染事故后 100 天,泄漏源地下水下游氨氮超标严重(限值 ≤0.2mg/L),最远超标范围在约距泄漏源 161m,超标面积为 0.01725km²、200 天最远超标范围在约距泄漏源 246m((已进入滞洪渠区域)),超标面积为 0.03375km²。

Cr⁶⁺预测结果:在发生污染事故后 100 天,泄漏源地下水下游 Cr⁶⁺超标严重(限值 ≤0.05mg/L),最远超标范围在约距泄漏源 117m,超标面积为 0.0075km²; 200 天最远超标范围在约距泄漏源 /182m(已接近滞洪渠岸边),超标面积为 0.0165km²。

预测表明,在发生污水处理构筑物底部发生裂缝情况下,对厂址地下水有很大影响,随着时间推移,污染物浓度会有所降低。项目拟选为工业区,地下水下游无水源,所在地下水为减水,发生最不利情况下,不会对周边饮用水安全造成影响。

(8)地下水环境保护措施

的防渗措施

a.合理划分防渗区

根据厂区可能泄漏至地面区域污染物的性质和生产单元的构筑方式,将厂区划分为重点污染防治区、一般污染防治区和非污染防治区。

重点污染防治区是指为污染地下水环境的物料泄漏后,不容易被及时发现和处理的区域。主要包括各类水池、储泥池、水处理药剂各库、加药间、污泥脱水间等区域。

一般污染防治区包括废水处理设施、储泥池、废水收集管道以及裸露于地面的生产功能单元,污染地下水环境的物料泄漏后,容易被及时发现和处理的区域,或对地下水环境影响较小的区域。主要包括化验室、机修室、设备间等区域。

非污染防治区是指不会对地下水环境造成污染的区域。主要为水公区等。

## b.分区防治

重点污染防治区:根据本项目废水处理设施相关构、建筑物的功能。重点防治区主要为废水处理设施(各水池、污泥储池应进行防腐、防渗处理)水处理药剂仓库、加药间、污泥暂存间,需要采取严格措施加强地下水防渗效果。项目可研报告中未对各区域防渗措施进行设计,本评价建议对各地下水污染重点防治区采取以下防渗措施。

处理药剂仓库、加药间等区域,可参照《工业建筑防腐蚀设计规范》(GB50046-2008)和《石油化工企业防渗设计通则》(QSY1303-2010)的重点污染防治区防渗设计。重点防渗区的防渗技术要求为等效黏土防渗层 Mb≥6.0m,K≤10⁻7cm/s。冰处理药剂仓库、加药间可采用防渗混凝土进行基础处理,采用三布五油防腐防渗处理,最后大理石面板做面层,车间墙裙采用三布五油防腐防渗处理。废水池采用钢砼结构,水池内外侧

XI)TH

均抹 20 厚 1:2 防水砂浆,在管道安装完成后再做玻璃纤维环氧树脂层(二丝三脂)涂膜。 污泥暂存间按照《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001) 要求进行防渗设计,防渗层的渗透系数小于 1.0×10-7cm/s。

一般污染防治区:可以参照《工业建筑防腐蚀设计规范》(GB50046-2008)和《石油化工企业防渗设计通则》(QSY1303-2010)的一般污染防治区进行防渗设计,防渗技术要求等效黏土防渗层 Mb≥1.5m,K≤10-7cm/s。

本。非污染防治区:对于基本上不产生污染物的非污染防治区,不采取专门针对地下水污染防治措施。

②地下水水质监控

a.地下水监测计划

为了及时准确地掌握厂址及下游地区地下水环境质量状况和地下水体中污染物的 动态变化, 污水处理厂应建立厂区内的地下水长期监控系统,包括科学、合理设置地下水污染整控井,建立监测制度,配备先建的检测仪器和设备,及时发现、及时控制。

地下水环境监测主要参考《地下水环境监测技术规范》(HJ/T164-2004),结合评价 区域含水层系统和地下水径流系统特征,考虑潜在污染源、环境保护目标和敏感点位 置等因素,布置地下水监测点。

b.地下水监测原则

重点污染防治区如密监测原则、主要监测浅层地下水的原则、上下游同步对比监视原则和监测井与上游村庄水井同时监测原则。

水质监测项目参照《地下水质量标准》相关要求和潜在污染源特征污染因**长**确定,主要监测项目可能渗漏的各项污染污染物。主要是高锰酸盐指数、氨氮、蒸铬、六价铬、硫化物、硝酸盐、亚硝酸盐等污染物。污水处理厂安全环保部门设立地下水动态监测小组,专人负责监测。

c.监测井布置

根据区域地勘资料,区域承压水—潜水总体上由地势较高的东北部向西南部安海湾大海径流和排泄,依据地下水监测原则,参照《地下水环境监测技术规范》(HJ/T164-2004)的要求,建议厂区内设置3眼监控式1眼上游、2眼下游)

d.监测数据管理

上述监测结果应按项目有关规定及时建立档案,并定期向厂安全环保部7万汇报,对于常规监测数据应该进行公开,特别是对工业区周边村庄所在区域的居民进行公开,满足法律中关于知情权的要求。如发现异常或发生事故,加密监测频次,改为每天监测一次,并分析污染原因,确定泄漏污染源,及时采取应急措施。

③ 地下水污染应急措施

XII

型作品,还有一种 地下水污染的应急处理应按照以下程序进行,

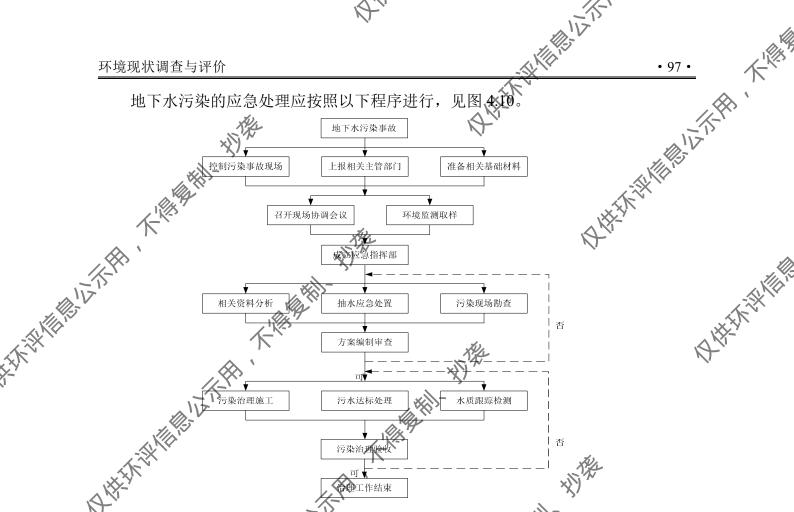



图 4.10 地下水污染应急治理程序框图

## 4.2.3 大气环境影响评价

- (1)污染源情况。
- ①本项目新增污染源

		大气评价计;各网格计算.				池中心	为原	V 点,X 转	油从西	向东为	i正,Y有	从南到北为	
		根据工程分	析,ī	E常情	况下,	· 1					/ \		× - //:>
* * * * * * * * * * * * * * * * * * * *	点		X座		<b>2-5 项目</b> 排气筒	<b>新增度</b>	<b>连气污</b>			<b>览表</b>		源强(kg/h)	
THE STATE OF THE S	源编号	点源名称	标 (m)	标 (m)	底部海 拔高度 (m)	筒 高度 (m)	筒 内径 (m)	口 温度 (k) ~	小时 数(h)	排放 工况	NH ₃	H ₂ S	,
	1	预处理排气 筒 <b>、</b>	87	157	0	15	0.8	297	8760	正常	0.0008	0.00006	
	2	污泥处理排	94	-67	0	15	0.8	297	8760	正常	0.0020	0.00016	

表 5.2-6 项目新增废气污染源(面源)一览表

<b>本源</b> 编号	面源名称	面源	東中心	X向宽	Y 向 长度	海拔高	面源 排放高度	年排放 小时数	排放工况	`评价因· (kg	子源强 /h)
州与		X	$\Lambda$   I	度(1)	(m)	度(m)	(m)	(h)	JL 1)L	$NH_3$	H ₂ S
1	预处理、厌	130	145	80	18	0	4	8760	正常	0.0007	0.00005

					Ø K			J	The last	(作)	
环境	现状调查与记	平价						-31/	<b>(()</b>		• 98 •
	氧池							The state of the s			
2	A ² /O 池	0 ,	<i>w</i> 0	64	75	0	4,4	8760	正常	0.0075	0.00039
3	污泥处理段	113	<b>№</b> -97	68	31	0	4	8760	正常	0.0017	0.00013
		">,			非卫	E常排放					1115
2	污泥处理段	113	-97	68	31	0	3	1	事故	0.0333	0.00263

## (2)环境空气保护目标

项目周边主要环境空气保护目标见第一章 1.6.2 小节。

# (3)评价因子及评价标准

根据本项目污染物排放具体情况,确定本项目的环境空气影响预测因子为NH3、H2S, 评价标准参照执行《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 参考限值, NH₃和 H₂S 小时值分别为 0.2mg/m³和 0.01mg/m³。

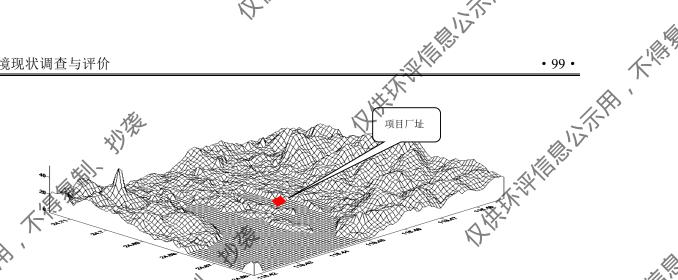
(4)区域气象数据、地表特征调查及区域地形参数

## A.地面观测站

本次评价长期气象统计资料采用晋江东气象站 2000~2019 年共 20 年的气候统计 选择 2023 年全年逐日逐时的气象资料作为评价基准年的气象数据,要素包括风 风向、总云量、干球温度和低之量。

## B.高空探空数据

距离项目最近的五个常规高空气象探测站坐标以及与本项目厂址地面距离见表 5.2-8。


表 5.2-8 距离厂址最近的五个常规高空探测气象站位置

序号	大地线距离(km)	气象站 WMO#	气象站名称	所在国家	气象站经度	气象站纬度
1	47	59134	XIAMEN	CN	118.07	24.45
2	176	58847	FUZHOU	CN	119.28	26.08
3	230	58968	TAIPEI	CN	121.53	25.03
4	311	59316	SHANTOU	CN	116.68	23.4
5	313	58725	SHAOWU	CN	117.43	27.33

最近的高空探测站距离本项目的 47km,按照导则要求,探空数据直接采用厦门气 象站 2019 年探空的数据,包括离地高度、气压和干球温度。

#### C.地形数据

地形数据源采用 csi.cgiar.org 提供的 srtm 免费数据,覆盖全球南北纬 60 度之间全部陆 地面积,分成5度×5度的单元片(约合25万km²),每月一 一个文件(压缩后在几 MB 到 1000) 多MB之间),南北向有 24 格,东西向有 72 格,分辨率为 90m。预测范围的地形图见图 5.11 和图 5.12。 1图.



## 图 5.11 项目拟选厂址所在位置地形图(三维效果)

## D.地表参数

划分为2个扇区,第一个扇区开始角度为180°,结束角度为 根据评价区地表特征, 270°,第二个扇区开始角度为270°,结束角度为180°。进一步预测时,根据地表特征设 置第一个扇区地表参数为:水面,地表湿度为,潮湿气候。第二个扇区地表参数为:城市 (城镇外区) 地表湿度为:潮湿。扇区地表 数频率为季, 预测采用的各季地表参数设置 值见表 5.2-9。

表 5.2-9 评价区地表参数选取一览表

	序号	扇区	时段	正午反照率	BOWEN	粗糙度
	1		冬季(12,1,2 月)	0.2	0.3	0.0001
	2	180°-270°	春季(3,4,5 月)	0.12	<b>%</b> ⁷ 0.1	0.0001
	3	180 -270	夏季(6,7,8 月)	0.1	0.1	0.0001
	4	N.X.	秋季(9,10,11月)	0.14	0.1	0.0001
	5	1/1/2	冬季(12,1,2 月)	0.35	0.5	0.4
	6	270°-180°	春季(3,4,5 月)	0.14	0.5	0.4
	7	270 -180	夏季(6,7,8 月)	0.16	1	(40 Å
	8		秋季(9,10,11月)	0.18	1	0.4
_						

## (5)评价等级及评价范围确定

大气污染主要来自于各污水处理构筑物。主要污染因子为 NH2 和 H2S 等,按照《环 境影响评价技术导则 大气环境》(HJ2.2-2018)规定,分别计算每 面浓度占标率 Pi(第 i 个污染物)及第 i 污染物的地面浓度达标准限值 10%时所对应的最 为二级,大气评价与预测范围为:以厂址中心为原点,边长为 5km 的矩形区域(25.0km)。

#### (6)大气环境影响与评价

期工程大气环境影响预测分析

正常工况下模型估算结果

项目大气环境影响等级为二级,根据导则,不再做进

						1/1/-	
	车间	污染物人		最大落地浓		最大值出现距离	D10%
	1 1 4	1371013	排气筒编号	度(ug/m³)	(%)	(m)	(m)
	1#排气筒	NH ₃	DA002	0.15304	0.08	125	- 0
_	1#7州 (川)	H ₂ S	DA002	0.011489	0.11	125	
	2#排气筒	NH ₃	DA001	0.3833	0.19	138	- <del> </del>
	Z#11F (   D) N	$H_2S$	DAUUI	0.030639	0.31	138	2/2

表 5.2-12 项目废气污染源(面源)估算模型计算结果一览表

源	夕称	是加田子	最大落地浓度	Pmax		D10%
Ĭ	<b>石</b> 物	光四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	(ug/m³)	(%)	距离(m)	(m)
	類从理	NH ₃	1.0854	0.54	93	_
	I)(处理	H ₂ S	0.077706	0.78	93	_
<i>y</i> □	H- AL BLIEBEL (A 200 MH)	NH ₃	9.9521	4.98	48	_
无组织	土化处理权(ATOME)	H ₂ S	0.518338	5.18	48	_
	<b>泛泥</b> 加	NH ₃	3.368,	1.68	33	
	行死处垤	H ₂ S	0.257674	2.58	33	
	1	预处理	原 名称	照 名称	名称	名称

根据正常排放情况下估算模式预测结果分析,正常排放情况下,氨排放最大落地浓度占标率为4.98%,最大落地浓度出现在不风向48m处,硫化氢排放最大落地浓度占标率为3.18%,最大落地浓度出现在厂区中心下风向48m处。项目氨、硫化氢浓度增量低于相应的环境质量控制标准、各污染物最大地面浓度占标率均多于10%,对周边大气环境影响不大。

b、非正常排放预测

项目废气非正常排放条件下,各污染源最大浓度和占依率见下表。

表 5.2-13 非正常排放预测结果干览表

无组织 污泥处理系统 NH3 161.81 80.91 850	污染源 类型	2 名称	乃采物 //	最大落地浓度 (ug/m³)	Pmax (%)	最大值出现) 距离 (m)
%H68	无组织	污泥处理系统	11/13	161.81 12.3737	80.91 123.74	850

根据 AERSCREEN 模型估算结果; 在污水处理站废气设施出现故障的非正常排放情况下,NH₃和 H₂S 无组织排放最大占标率分别为 80.91%和 123.74%, 最大落地浓度 为 85m, 主要影响范围为安东园区和园区临近的居民区,为了员正及周边敏感目标的健康,防止废气非正常工况排放,运营单位必须加强废气处理设施的管理,定期检修,确保废气处理设施正常运行,在废气处理设备停止运行或出现故障时,产生废气的各工序也必须相应停止生产。

(7)大气防护距离确定

①大气防护距离

根据估算结果,本次工程新增污染源对周边环境空气的贡献值占标率最大值为 5.18%,不会超过环境质量标准要求。

②卫生防护距离

《大气有害物质无组织排放卫生防护距离推导技术导则》中卫生防护距离的推导

XIIX

公式,是基于地处简单地形、产生大气有害物质无组织排放的生产单元建立的。根据《制定地方大气污染物排放标准的技术方法》中规定,项目地处复杂地形区域(属于水陆交界区),卫生防护距离应由环评文件确定。根据估算模式预测,项目新增污染物对周边环境的贡献值最大占标率为5.18%,远低于环境质量标准。评价考虑模型计算产生的误差。以及不利气象因素、生产情况的排污条件厂外要设置适当的防护距离,根据预测结果,排气筒最大落地浓度距离为88m、其余面源最大落地浓度距离为21~85m,保守考虑,将预测的最大浓度点对应的距离作为环境防护距离,本次评价建议调节池、前置高效沉淀池、水解酸化池、污泥浓缩池及污泥脱水机房外设置100m的环境防护距离。

## (8)大气环境影响预测结论

评价区目前属于大气环境质量达标区,评价范围内无一类区,大气环境影响评价结论如下:

新增污染物正常排放下 NH₃、H₂S 短时浓度贡献值的最大浓度占标率均小于 10%,符合项目区域环境功能区划要求。

## (9)大气环境影响自查表

本项目大气环境影响评价百查表见下表 5.2-14。

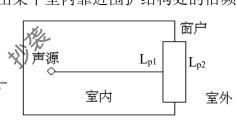
表 5.2-14 项目大气环境影响评价自查表

						<u> </u>			
	工作内容				自查	项目			N.
评价等级	评价等级	一级□			二级区			三级	<u> </u>
与范围	评价范围	边长	=50km□	1	边长 5~50km□		边长=5	an 🗸	
	SO ₂ +NO _x 排放量	≥2	≥2000t/a□		500~2000t/a□		ı 🗆	<500t	⁄a□
评价因子	证从国乙	基本污染物	勿(二氧化磷	会 二氧	氧化氮、PM ₁₀ ) 包括		包括	二次 RM _{2.5} [	
	评价因子	其他传染物(NH ₃ 、H ₂ S)		H ₂ S)	不包括		二次 PM _{2.5}		
评价标准	评价标准	国家村	<b>淮</b> 🗵	地	方标准[	✓ N	→录 100	其他标	准□
	环境功能区	₽ P	类区□			二类区口		一类区和二	二类区□
	评价基准年			(2023) 年					
现状评价	环境空气质量现	长期例行监测数据			主管部∜发布的数据☑		   现状补充监测 <b>☑</b>		
	状调查数据来源	大别例? 	□ 土官部以及市的剱据区			现 从 本			
	现状评价	达标区↓		7 大达		不达	标区□		
	No.	本项目正常	排放源☑	K	7				
污染源调	调查内容	本项目非正	常排放源	拟替代	的污染	其他在建	、拟建项	D LARES	<b>▽</b> た源□
查 📈	师旦内谷 -	✓	1	源	ξ _□	目污多	た源☑		<i>K //</i>
- Alas	•	现有污	染源□					·X \	
大气环境		AERMOD	ADMS	AUST A	AL2000	EDMS/A	ED CAL	PUF 网格	其他
影响预测	预测模型				]	T	F	模型□	
与评价		30 K > 5	:Okm□		边长 5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		[
	1 10001池国	<b>边长≥50km</b> □		边长 5~50km□			×4 K−31		

XIIIX

			H. A.	,	(本)
环境现状	调查与评价			A SAME OF THE PARTY OF THE PART	• 102 •
	预测因子	预测因子	(NH ₃ 、H ₂ S)	包括二次	次 PM _{2.5□} -次 PM _{2.5} ☑
	正常排放短期浓 度贡献值	C _{本项目} 最大人	5标率≤100%☑		5 标率>100%□
آ ر	上常排放年均浓 度贡献值		最大占标率≤10% 最大占标率≤30%		标率≥10%□
(本)	非正常排放 1h 浓度贡献值	X1)	C _{非正常} 占标率	1	第占标率>100%☑
小水	保证率日平均浓度 度和年平均浓度	C _{mi}	达标☑	C _{曼如不}	达标□
	区域环境质量的 整体变化情况	k≤-20	0%☑ 💥	k>-2	0%□
环境监测 计划 \	污染源监测	监测因子: ( N	NH3、HS物)	有组织废气监测☑ 无组织废气监测☑	无监测□
	环境质量监测	监测因于		监测点位数()	无监测☑
Tix	环境影响	<b>*</b>	可以接受☑	不可以接受□	发
评价结论	大气环境防护距 离	112 XX,	距厂界最	远(100)m	
	污染源年排放量	<b>80</b> ₂ : () t/a	$NO_x$ : () $t/a$	颗粒粉( ) t/a	VOC _s : () t/a
	ži <del>či</del>	~~"为勾选项。	填"√":"()"为	内容填写项	

## 4.2.4 声环境影响调查与评价


## (1)主要噪声源

分析表2.16。

- (2)噪声影响预测
- ①噪声影响内容

本项目厂界外200m范围内均为工业用地,无敏感, 声预测,给出厂界噪声最大值及位置。

#### ②预测模式



# 图 5.13 室内声源等效为室外声源图例

$$L_{p,1} = L_w + 10 \lg \left( \frac{Q}{4\pi r_1^2} + \frac{4}{R} \right)$$

Lp1——靠近开口处(或窗户)室内某倍频带的声压级或 A 声级,w——点声源声功率级(A 计权或倍频带),dB;

—指向性因数;通常无指向性声源,当声源放在房间中心时,Q=1;当放在

Q=2; 当放在两面墙夹角处时,Q=4; 当放在三面墙夹角处时,Q=8;

-房间常数;  $R=S\alpha/(1-\alpha)$  ,S 为房间内表面面积, $\mathbf{m}^2$ , $\alpha$ 为平均吸声系数;

出所有室内声源在靠近围护结构处产生的总倍频带声压级:

$$L_{pli}(T) = 10 lg \left[ \sum_{j=1}^{N} 10^{0.1 L_{plij}} \right]$$

$$L_{p2i}(T) = L_{p1i}(T) - (TL_i + 6)$$

$$L_w = L_{n,2}(T) + 10 \sqrt{g} S$$

 $L_w = L_{p2}(T) + 10 v_g S$ 式中, $L_w$ ——中心位置位于透声面积(S)处的等效声源的倍频带声功率

 $L_{p2(T)}$ ——靠近围护结构处室外声源的声压级,dB;

设第i个室外声源在预测点产生的A声级为LAi,在T时间内该声源工作时间为ti; 第j个等效室外声源在预测点产生的A声级为 $L_{Aj}$  ,在T时间内该声源工作时间为 $t_{ij}$  ,则拟建工程声源对预测点产生的贡献值( $L_{eqg}$ )为: $Leq(T) = 10 \lg \left[ \left( \frac{1}{T} \right) \sum_{i=1}^{N} t_i 10^{0.1 L_{Aj}} + \sum_{j=1}^{M} t_j 10^{0.1 L_{Aj}} \right]$ 式中: $L_{eqg}$ —建设项目声源在预测点产生的噪声贡献值,dB; T——用于计算等效声级的时间,s; N——室外声源个数;

$$Leq(T) = 10 \lg \left[ \left( \frac{1}{T} \right) \sum_{i=1}^{N} t_i 10^{0.1 L_{Aj}} + \sum_{j=1}^{M} t_j 10^{0.1 L_{Aj}} \right]$$

ti——在 T 时间内 i 声源工作时间, s;

M——等效室外,源个数;

-在 $_{\it T}$  时间内  $_{\it j}$  声源工作时间, $_{\it s}$ 。

③预测结果与评价及评价

大學學 依据上述预测方法和模式,本工程运行后,在生产过程中工作时间为24h工作制, 区产生各噪声源昼间与夜间变化产明显,仅存在背景值的不同,为此本次评价仅产区的厂界四周的夜间噪声进行预测。各噪声源在预测点位处噪声相叠加,可以 界噪声产生的影响。结果见表4.2-15。

界及周边敏感点噪声预测结果一览表(单位:dB(A))

_			**************************************	W-H-11	
_	序号	预测点位名称	最大 贡献值	判断	, i
	1	东厂界	36.28	昼、夜间均达标	
_	2	南厂界	48.91	昼、夜间均达标	
	3 //	西厂界	40.88	昼、夜间均达标	
	4.3	北厂界	41.35	昼、夜间均达标	

## (5)评价结果分析

预测结果表明,各厂界的昼、夜间噪声均能满足《工业企业

准》(GB12348-2008)中3类标准要求。

(3)声环境影响评价口查表

声环境影响评价自查表见表 4.2-16。

## 表 4.2-16 声环境影响评价自查表

		工	作内容			自查项目	(# <u>//</u> )-
		评价等级	评价等级	一级□	二二级	. 🗆	三级区
		与范围	评价范围	200m☑	大于20	0 m□	小手200 m□
		评价因子	评价因子	等效连续A	声级区 最大A	、声级□ 计权等	等效连续感觉噪声级□
		评价标准	评价标准	国家标准☑	地方标	:准□	■ 国外标准□
			环境功能区	0 类区口	1类区□ 2类区	□ 3类区図	<b>4</b> a类区□ 4b类区□
	NA TO	现状评价	评价年度	初期山	近期☑	中期口	応期□
	XX)	况仅计划	现状调查方法	现场实测法	☑ 现场	实测加模型计算	∠法□ 收集资料☑
	_		现状评价	达标百分比		100%	
THE STATE OF THE S		噪声源	噪声源调查方	现场实测	<b>7</b> 2.	有资料☑	研究成果□
DILLY STATE		调查	法			1	一
TX.			预测模型	导则推荐:		其他☑	&
			预测范围	200m□		200m□	小于200m☑//
		声环境影	预测因子	等效连续A	声级☑ 最大A /	声级□ 计权等	等效连续感觉噪声级□
		响预测与	厂界噪声贡献	达标☑		不达标□	10-5
		评价		~ W		71. <b>⊘</b> 10.□	
			声环境保护目	达标□		不达标□	<b>√-</b> ₩ ``
		11/2	标处噪声值				
		环境监测	排放监测	厂界监测☑	固定位置监测□	自动监测□	手动监测口 无监测口
	^ \	计划	声环境保护目 标处噪声监测	监测因于	子: (L _{Aeq} )	监测点位数	无监测□
//		评价结论	环境影响	*\$7	可行☑	不可行□	

注: "□" 为勾选项 , 可 √ ; "()"

## 4.2.5 固体废物环境影响分析

→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・
→ 105・ 截的栅渣。

❤️①污泥性质

沙、纤维、动植物残体等固体颗粒及其凝结的絮状物、各种胶体、有机质及吸附的金 属元素、微生物、病菌、虫卵等综合固体物质、它主要由初沉污泥、剩余活性污泥构、 成。初沉污泥是进入污水厂的悬浮物,在初沉池中状约50%的悬浮物成为初沉污泥被 去除,初沉污泥极易腐烂变臭,含水率一般为30%。以传统活性污泥法为代表的污水 绝大部分有机物可以使微生物增殖,产生过剩的微生物称为剩余污 生物除磷工艺是通过排除富含磷的剩余污泥来实现的,必然要产生大量的 由多种微生物形成的菌胶团与其吸附的有机物、无机物组合而成的脱 水污泥,成分复杂、高含水率、富含难降解的有机物、重金属和盐类、病原体微生物、 寄生虫卵等有毒有害物质

## ②污泥成分

• 有机质、营养物质含量较高

污水处理广产生的污泥中含有大量有机质和中富的N、P等营养物质,不加稳定化 处理的污泥任意排入水体,污泥中的有机物和氨氮将大量消耗水体中的氧 富营养化的产生,引起水质恶化,对水生生物的正常生长与繁殖产生严重影响。

根据现有工程的污泥监测报告、污泥属于一般固废。

## (2)厂区废水污泥的环境影响分析

对于本项目废水性质,项目正式投入生产后,应委托危险废物检验鉴别机构进行 鉴别,若鉴别结果低于《危险废物鉴别标准》,按一般工业固体废物进行处置, 照现有工程的处置方式,不会对环境造成污染影响、若高于《危险废物鉴别标准》。 应列入国家危险废物管理范围,按照《危险废物处存污染控制标准》(GB 18597—2023) 的规定,进行收集、贮存、运输,且按国家有关规定申报登记。由有资质的单位进行 处置后,可大大减轻对环境的影响。同时评价要求,建设单位在运营过程过程中应定 期处污泥进行检测,检测频率不低于1次/年。

(3)生活垃圾

本工程新增员工 28 人,被 0.5kg/d·人计算,生产运营过程中产生的生活垃圾量为

14kg/d(5.11t/a)。该部分生活垃圾交给环卫部门清运,对周围环境影响不大。

通过以上分析可见,项目的固体废物的最终处置为案是安全、可靠的,只要严格实施规范化操作,对生态环境造成的不利影响很小。

## (4)废包装袋

项目繁凝剂等污水处理药剂部分采用袋装包装,在使用拆包过程中会产生废包装袋,主要成分为废塑料,属于一般固度,产生量约为0.72t/a,收集后由资源利用单位回收利用。

## (5)一般固体废物处置可介性分析

项目污泥、生活垃圾等一般固体废物可委托瀚蓝(晋江)固废处理有限公司(晋江市垃圾焚烧发电综合处理厂)处置,瀚蓝公司位于晋江罗仙街道社店社区,一期工程设计焚烧处理规模 1000%d,于 2005 年建成,2005 年6 月并网发电。二期工程设计焚烧处理规模 800t/d,2010 年 10 月建成运行投产。 双期工程建成后,垃圾焚烧总处理能力达 1800t/d。2020 年瀚蓝公司开始提标改建项目,改造后,生活垃圾总焚烧处理规模 2300t/d,市政污泥干化处理规模 300t/d。项目运行后,新增污泥量为 19.7t/d,仅占瀚蓝公司污泥干化处理规模 300t/d。项目运行后,新增污泥量为 19.7t/d,仅占瀚蓝公司污泥干化能力的 6.6%,可满足项目污泥处置需求。

### 2、危险废物

项目危险废物来源于设备维护产生废油、废水检测等产生的废液。由专用容积收集后,送危险废物暂存问暂存,定期交由资质单位处置。

## 4.2.6 社会环境影响分析

目前,区域远东污水厂处理的水量高峰期已超过现有工程的设计负荷,本工程的运行,将进一步减小区域日渐增长的污水处理压力,进一步完晋江市的城市基础设施建设,进一步解决了泉州半导体高新区设立分园区工业园的废(污)水处理问题,避免随着城市发展引起的废(污)水量增多、排放对水环境的影响。项目的建成将进一步减少服务区范围内部分污水直接排入临近河流或排洪渠的污水量,大太降低了减少排入水体的污染物数量,从而有利于区域地表水环境及临近海域的水环境质量的改善,提高城市服务功能,改善城市的投资环境,对城市的发展、开放具有强有力的推动作用,为晋江市经济、社会的可持续发展打下了良好的基础。

## 5 环境风险影响分析

## 5.1 评价依据

## 5.1.1 环境风险调查

根据工程设计方案,废水处理工艺需用硫酸、盐酸、聚丙烯酰胺(PAM)、聚合氯化铝(PAC)等几种药剂; 化验室进行日常水质分析时需用到浓硫酸、重铬酸钾、硫代硫酸钠、硫酸亚铁胺等物质。项目污水处理过程药剂储存情况见表5.1。

## 表5.1项目药剂储存情况一览表

						- • ·	
序号	药剂名称	储存方式	储存量	储存位置	UN 编号	GB 12268 类别 及包装类别	毒性数据
1	聚丙烯酰胺 (PAM 0.1%)	PE 储罐	59.87t	加药间			无数据
2	氢氧化钠溶液 (32%溶液)	PE 储罐	1×20m³	加药间	11/2	k.	K
3	聚合氯化铝 (PAC 10%)	PE 储罐	2×30m³	加药间	_ _		无数据
4	除氟剂(13%)	PE 储罐	2×20m ³	加药间			
5	硫酸(98%液	PE 储罐	115.05t	常规检测分析室			LD ₅₀ : 5080mg/kg (大鼠经口)
6	碳源 乙酸钠 20%)	PE 储罐	1×30m³	加药间			The same of the sa
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CaO(固体)		638.75t×	污泥脱水间		X,	)
1/8	FeCl ₃ (固体)	袋装/溶液 罐	255.0t	污泥脱水间	1773/ 2582	8-Ш	LD ₅₀ : 1872mg/kg (大鼠经口)
9	稀盐酸	PE 储罐 🗸	$1 \times 20 \text{m}^3$	加药间		New	无数据
10	次氯酸钠 (10%)	PE 储罐	1×20m ³	加药间	4	大學"	,X
		N.S.					42

## 5.1.2 风险潜势初判

(1)项目涉及危险物质数量与临界量比值(Q)

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$
 (5.1-1)

式中:  $q_1$ ,  $q_2$ , ...,  $q_n$ ——每种危险物质的最大存在总量,

 $Q_1$ , $Q_2$ ,…, $Q_n$ ——每种危险物质的临界量,

当 Q<1 时,该项目风险潜势为 I。

当 Q≥1 时,将 Q 值分为: (1)1≤Q<10; (2)10≤Q<100; (3)Q≥100。

根据 HJ169-2018 附录 B 中表 B.1 列出风险物质临界量,已列出的危险物质取其推荐的风险物质临界量,未列出的风险物质按表 B.2 推荐值选取。

对照《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 和《化学品分类和标签规范第 18 部分:急性毒性》(GB30000.18-2013),次氯酸钠、硫酸属于《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 中的重大危险物质,其它原料均属于低毒性,不属于《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 中的重大危险物质,

XIV XX

也不属于《化学品分类和标签规范第 18 部分: 急性毒性》(GB30000.18-2013)中的类别 1~类别 4, 无临界量推荐值。因此,评价只选取重大危险物质次氯酸钠、硫酸计算 Q值。

本项目危险物质临界量及 Ø 值见表 5.2。

## 表 5.2 危险物质数量与临界量比值 Q

序号	危险物质	CAS号外	厂区最大储量(t)	临界量(Qn/t)	危险物质 Q 值
	次氯酸钠	7681-52-9	20	5	4
2	硫酸	7664-93-9		10	

根据上表计算结果, 本项目全厂危险物质数量与临界量比值为 2.5, 1<Q<10。

## (2)项目行业及生产工艺(M)

分析项目所属行业及生产工艺特点,按照表 5.3 评估生产工艺情况。具有多套工艺单元的项目、对每套生产工艺分别评分并求和、将 M 划分为(1)M>20; (2)10<M≤20; (3)5<M≤10; (4)M=5,分别以 M1、M2、M3 和 M4表示。

表 5.3 行业及生产工艺(M)

~ /\	(M)		
4	评估依据	分值	本项目分值
12/4	涉及光气及光气化工艺,电解工艺(氯碱)、氯化工艺、		
	耐化工艺、合成氨工艺、裂解(裂化)工艺、氟化工艺、	##///-	
石化、化工、	加氢工艺、重氮化工艺、氧化工艺、过氧化工艺、	10/套	/
医药、轻工、	胺基化工艺、磺化工艺、聚合工艺、烷基化工艺、	× ⁷	
化纤、有色冶	新型煤化工工艺、电石生产工艺、偶氮化工艺		
炼等	无机酸制酸工艺、焦化工艺	5/套	1 1/2
	其他高温或高压,且涉及危险物质的工艺过程a、	5/套(罐区)	1 11/2
	危险物质贮存罐区	万安(唯区)	/ 3/
管道、港口/	涉及危险物质管道运输项目、港口/码头等	10	-M-
码头等		10	( ) ( ) ( ) ( )
	石油、天然气、页岩气开采(含净化)。气库(不含加		D. H
石油天然气	气站的气库),油库(不含加气站的油库)、油气管线	10	1 / /
	b(不含城镇燃气管线)		K .
其它	涉及危险物质使用、贮存的项目	5	5

中高温指工艺温度≥300℃,高压指压力容器的设计压力(P)≥10.0MPa; 中长输管道运输项目应按站场、管线会设进行评价

本项目分值为 5, 行业及生产工艺用 M4 表示。

## (3)危险物质及工艺系统危险性分级(P)

根据危险物质数量与临界量比值(Q)和行业及生产工艺(M),按照表 5.4 确定危险物质及工艺系统危险性等级(P),分别以 P1, P2, P3, P4表示。

表 5.4 危险物质及工艺系统危险性等级判断(P)

				1///
危险物质数量与		行业及生,	产工艺(M)	7//2
临界量比值(Q)	M1	M2	M3	M4
<b>©2100</b>	P1	P1	P2	P3
110≤Q<100	P1	P2	P3	P4
1≤Q<10	P2	P3	P4 ^\	P4

本项目 1<Q<10, 行业及生产工艺为 M4, 则判断本项目危险物质及工艺系统危

险性为 P4。

#### (4)环境敏感程度(1)的分级

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 D,项目位于晋江东石镇产业园区内。周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构总人数关于 1 万人,小于 5 万人,其大气环境敏感性为中度敏感区 E2; 项目尾水直接外排,地表水环境敏感性为低度敏感区 E3; 项目区域地下水功能敏感性分区为不敏感区 G3,根据项目水文地质调查,项目区域包气带防污性能为 D2,因此项目地下水环境敏感性为低度敏感区 E3;

#### 5.1.3 评价等级确定

根据《建设项目环境风险评价技术导则》(HJ169-2018),环境风险评价工作等级划分依据判定见表 5.5,环境风险潜势划分依据见表 5.6。

表 5.5 环境风险评价工作等级划分

	V	7 5 1 1 - 1 (/// _A 1 1 - 1	J 1341 457 5	
环境风险基势	IV、IV ⁺	THE PARTY OF THE P	II	I
评价工作等级		<b>\</b> -	=	简单分析 a
	- 11	上版 左以 川 丘 十二六日	111/11 17 /2	化加 可以小斗儿儿

a 是相当于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险防范措施 等方面绘出定性的说明。见附录 A。

#### √表 5.6 环境风险潜势划分

环境敏感程度(E)	7///	行业及	生产工 <b>艺(M</b> )	
外况吸急性及(E)	极高危害(P1)	高度危害(P2)	中度危害(P3)	轻度危害(P4)
环境高度敏感区(E1)	IV+	IV	III	III 🚜
环境中度敏感区(E2)	IV	III	\ III	II "VI"
环境低度敏感区(E3)	III	III //	II II	I 3/
1		./\		

根据本项目危险性(P4)和项目环境敏感程度,可确定本项目环境风险潜势, 依据表 5.5 评价等级划分依据,确定本项目风险评价等级详见表 5.7。

#### 表 5.7 本项目环境风险评价工作等级

		X.V				
等级判定	敏感程度	M.	Q	P	环境风险潜势	评价等级
<b>龙</b> 大气环境	E2	12/21			W.	三级
地表水环境	E3	M4	1 <q<10< td=""><td>P4</td><td>1,-1,</td><td>简单分析 a</td></q<10<>	P4	1,-1,	简单分析 a
地下水环境	E3				I V	简单分析a

# 5.2 环境风险识别

#### 5.1.1 物质风险识别

根据风险导则要求,物质危险性识别范围包括主要原料及辅助材料、燃料、中间产品、副产品、最终产品以及生产过程排放"三废"污染物、火灾和爆炸伴生/次生物等。危险物质火灾危险性判别标准参照《石油化工企业设计防火规范》(GB50166~2008)第3章火灾危险性分类,物质毒性数据《化学品分类和标签规范第18部分、急性毒性》(GB30000.18-2013)的分级依据进行划分。具体见表5.8和表5.9。

# 表 5.8 火灾危险性分类表

环境风险影	响分析		• 110 •
火灾危险	2性分类	产品名称	特征
甲		可燃气体	可燃气体与空气混合物的爆炸下限<10%(体积)
7	X		可燃气体与空气混合物的爆炸下限≥10%(体积)
甲	~. <del>//</del> ,	液化烃	15℃时蒸汽压力>0.1Mpa 的烃类液体及其他类似液体
T'	B		甲A类以外,闪点<28℃
	A A		闪点≥28℃至≤45℃
	В	可燃液体	闪点>45℃至<60℃
(A)_	A	×	闪点≥60℃至≤120℃
人	В	<u>~</u> .\\-	闪点>120℃

# 表 5.9 急性毒性分类标准一览表

	. ⊗	±	A		×	5 ~	闪点≥60°C至≤120°	C
	5	Ŋ	В		~//-	•	闪点>120℃	
EXPERIENCE IN					表 5.9 急	性毒性分类标》	<b>惟一览表</b>	
-3/17		16.1:	_		(- _{\sigma_s} )		分级	
N.		指标	<b> </b>	Į,	II	III	IV IV	V
X-'		吸入L	C ₅₀ (ml/l)	<b>₹</b> 0.1	0.1 <lc<sub>50≤0.5</lc<sub>	0.5 <lc<sub>50≤2.5</lc<sub>	2.5 <lc<sub>50≤20</lc<sub>	>20
	急性毒	_	mg/kg)	<50	50 <ld<sub>50≤200</ld<sub>	200 <ld 1000<="" td=""><td>1000<ld<sub>50≤2000</ld<sub></td><td></td></ld>	1000 <ld<sub>50≤2000</ld<sub>	
	性	1	mg/kg)	<5	5 <ld<sub>50≤50</ld<sub>	50 <ld<sub>50≤300</ld<sub>	300 <ld<sub>50≤2000</ld<sub>	2000 <ld<sub>50≤5000</ld<sub>
K	7	危险说	乞明	吞咽、	皮肤接触致命	吞咽、皮肤接触、 毒	中 吞咽、皮肤接触有	吞咽、皮肤接触可能 有害

本项目涉及的危险物质主要是原辅材料所用的硫酸、次氯酸钠,根据上述火灾和急性毒性识别依据,本项目涉及主要危险物质的火灾和毒性判定结果见表 5.10。 表 5.10 项目主要危险物质火灾和毒性判定结果一览表

				色险性	毒性	1	V V	(# <u> </u>	
	危险 物质	形态		火灾危 险性分 类	急性毒性	毒性类别	健康危害	危险特性	
AND	硫酸	液体	<	助体强性刺性、腐、激性、激性、	LD ₅₀ : 5080mg/kg (大鼠经口) LC ₅₀ :50510mg/m ³ (大鼠吸入)	/	对刺引混刺水门起严炎伤疡溅膜性气气放射引混刺水门起严炎的病性,以致者发展别死的有或,所以致者发展别死以胃克、能性,以致者发展别死以胃克、强力,以致者发展,是是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个	遇可易可纤会应烧氯盐味末发烧蚀水发燃燃维发,。酸、酸等生有化大生物物素生至电、酸、烈炸烈水放。苯糖接烈起、雷、属应或的性热,与和、触反燃高酸苦粉,燃腐。	K-IRINA X
THE TOTAL PROPERTY OF THE PARTY		液体		不可具燃腐性,具	LD50: 8500mg/kg (冰紅经口)	×	1.吸入:雾滴会刺激鼻子吸喉咙,分解产生的氯气会刺激鼻子及喉咙,浓度高时会严重伤害肺部;2.皮肤:雾滴剂溶液	生有毒的腐蚀	

	A THE STATE OF THE	(大 ⁻⁾
环境风险影响分析		·111·
致敏性,可致从外历	会刺激皮肤、最严重时可能 化学灼伤: 3.眼睛: 雾。时 液。根睛,浓度高时, 液。一种,浓度。一种, 。一种,一种,一种。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	溶
5.1.2 工艺过程风险识别	XII.	AKY-
<b>位日长出环境风险重热的可能</b>	(大) 	

# 5.1.2 工艺过程风险识别

※项目发生环境风险事故的可能对节及由此产生的影响方式主要有以下几方面:

#### (1)设备故障

污水或污泥处理系统的设备发生故障或受毒素冲击,使污泥活性下降而无法降解 有机物。此外,污泥膨胀或发酵,散发恶臭气体影响污水处理厂周边大气环境。

#### (2)进水水质 🛠

在收水范围内, 生产企业排污不正常致使进厂水质负荷突增, 或有毒有害物质误

出现一些不可抗拒的外部原体,如停电、突发性自然灾害等的造成泵站及污水 处理厂污水处理设施停止运行; 大量未经处理的污水直接排放。

#### (4)暴雨期间洪水对污水处理厂安全的影响

暴雨期间洪水对污水处理带来的影响主要有冲毁部分构筑物、淤积地下构筑物并 不能运行,污水直接溢流排放,给周边水体带来产 重污染。

#### (5)污水管网风险事故

因自然因素或人为因素造成污水管道由于堵塞、破裂和接头处的破损, 的污水外溢,污染地下水及地表水。

#### (6)化学品泄漏风险

项目厂区内有一定量的浓硫酸贮存。在罐区贮存过程中存在贮罐破裂、泵、阀门、 管道破损、误操作液位设备失灵造成物质泄漏。一旦发生泄漏 堰拦截并收集不会进入外环境,但在地面防渗出现&缝等特殊情况 土壤,也会对工作人员的健康产生一定的危害。

#### (7)非正常运行过程风险事故

污水系统事故风险具有突发性,会给维护系统的工作人员带来重大损害 危及生命。

#### 5.3 环境风险事故的影响分析

#### 5.3.1 非正常污水排放的环境风险

根据对污水生物处理机理及国内同类污水处理厂运行实践的分析,污水处理、异致未处理污水溢出的主要原因如下:

- (1)由于污水处理设备、设施质量问题或养护不当,将造成设备、设施故障,导致污水处理效率下降甚至未处理直接排放。尤其是污水处理厂停电状况下对活性污泥造成影响。
- (2)如遇污水处理厂停电、直接导致污水生化污泥不能处理污水,如直接排入纳污海域,对海域水环境造成污染影响。

#### 5.3.2 污泥环境风险

(1)污泥得不到有效、安全处理处置的环境风险

本工程运行后将产生栅渣及污泥量,污泥中含一定有机物、病原体及其它污染物质,如不进行及时、恰当的处置,将可能散发臭气,或随地表径流进入地表水体,对环境造成二次污染,对人体健康产生危害。

此外,若污泥无法及时清运处理,大量污泥只能暂时放在贮泥池中。污泥长时间未经处理放置,引起污泥发酵、出现污泥分层、发泡、散发恶臭气体等现象。另外, 贮泥池的容积是有限的,为污泥长时间不能外运贮泥池爆荡,则出现污泥外溢污染厂 区环境等问题。

#### (2)污泥膨胀、污泥解体

正常活性污泥沉降性能良好,含水率在99%左右,当污泥变质时,污泥不易沉淀,污泥指数增高,结构松散,体积膨胀,含水率上升,澄清液稀少,颜色异变,即发生了"污泥膨胀"。主要是丝状菌大量繁殖所引起,也有由于污泥中结合水异常增多导致的污泥膨胀。一般污水中碳水化备物较多,缺乏 N、P、Fe等养料、溶解氧不足,水温高或 pH 较低都容易引起丝状菌大量繁殖,导致污泥膨胀。此外,超负荷、污泥龄过长或有机物浓度梯度小等,也会引起污泥膨胀,排泥不畅易引起结合水污泥膨胀。

由于污水中混入有毒物质或运行不当,如曝气过量会使活性污泥生物—营养的平衡遭到破坏,使微生物减少而失去活性,吸附能大降低,絮凝伸缩小质密。一部分的成为不易沉淀的羽毛状污泥,处理水质浑浊,污泥指数见降低等。当污水中存在有毒物质时,微生物会受到抑制或伤害,净化能力下降或停止,从而使污泥失去活性。

#### 5.3.3 事故排放对人体健康的影响分析

发生环境风险事故时,首先受影响的是厂内工作人员的健康和安全,当污水系统的某一构筑物出现事故,必须立即予以排除,此时维修工人需要进入污水管道、集水井或污水池内操作,这些地方易产生和积累有毒的  $H_2S$  气体,在维修时如不注意采取

XIIX

防护措施,维修人员会因通风不畅吸入有毒气体而出现***。呼吸不畅等症状,严重的甚至导致死亡。

污水或污泥中都含有各种病原菌和寄生虫卵,操作人员直接接触污水或污泥层如不注意卫生,可能引起肠道疾病和寄生虫病。

#### 5.3.4 污水管网、泵站事故

污水管网系统由于管道堵塞、破裂和接头处的破损,会造成大量污水外溢,污染 地表水和地下水,污水泵站由于长时间停电或污水水泵损坏,排水不畅时易引起污水 漫溢。

泵站故障的原因主要有两个方面:即供电中断及设备故障,此时污水将不能得到有效地收集,污水将溢流入附近河流或地下。设备故障大多由于设计不合理、管理不善以及设备质量差所致。本项目机械设备为国内同类产品中的先进产品,并具有较高的自控水平,项目在泵站设计中使用带自偶装置的搞堵塞潜污泵,通过液位计及 PLC 自动控制水泵的开停及变速运行。一旦出现故障,可及时对故障进行排除。从目前项目所在地电力的供应情况来看,全区电力目前供应充足,一般情况下來会发生停电事故,只有当供电线路出现故障及减上大的自然灾害(如台风、地震等)才有可能发生停电事故,这种故障发生的概率很少,另外只要抢修及时,造成的影响将很小。由于电力机械故障造成的事故几率很低。

#### 5.3.5 废气处理系统故障事故

废气处理系统由风机、风管、净化设施组成,由于长时间运行可能导致风管腐蚀破损、风机电机故障、净化设施净化效率降低等问题。根据本报告书第四章预测结果,在废气处理系统故障时,废气未经处理直接排放,对周边环境敏感点不会造成较大的污染影响。

#### 5.3.6 化学品储存泄漏事故

若化学药剂储存过程中因罐体变形过大、腐蚀过薄甚至穿孔、焊缝开裂、浮盘倾斜、密封损坏、高、低液位指示等储罐附件失灵、防腐层质部受到破坏。都容易造成跑冒滴漏甚至是大量泄漏。若处置不当会污染地下水及对污水处理系统造成冲击。

#### 5.3.7 污水下渗污染事故

若构筑物区施工不当产生裂缝或残缺,或者因基础处理不好,当废水增加时发生 不均匀沉降,导致构筑物底部破坏等事故状态。这时污水渗入地下,将导致厂区周围 一定花围内的地下水污染。根据报告第四章预测,发生该污染事故时,广区地下水会 严重超标。由于项目位于区域地下水下游,下游无取水井,不会造成饮用水安全问题。

XIVE

#### 5.4 环境风险防范措施与应急预案

#### 5.4.1 环境风险防范措施

(1)非正常污水排放的防范对策

为了防止污水事故排放,以及在事故发生时及时尽最大可能降低事故影响的 及程度, 必从以下几个方面进行控制:

- ①加强电站管理,保证供电设施及线路正常运行。
- ②加强输水管线的巡查,及时发现问题及时解决。
- ·运行管理和操作责任制度; 搞好员工培训, 建立技术考核档案, 不合格者不得上岗。
  - ④加强设备、设施的维护与管理,关键设备应有 机,保证电源双回路供电。
- ⑤建设有效的在线监测系统。将检测系统数据上传至中控系统,并定期对监测系 统进行比对和校准,保证检测结果的准确性、保证出现超标时能第一时间做出反应。
- ⑥监理有效的预警应急机制。为了有效防范废水的事故排放,应在第一时间发现 废水的超标后,立刻发出警报,切断排污口阀门。建议建立园区事故必急预案,项目 **应急预案应与排污单位的应急预案形成联动。污水厂出现超标现象时应立即上报,并** 立即通知排污单位停止排水、排污单位应将自身废水排入厂区的事故池内,避免污水 厂持续进水。
  - ⑦事故废水应急预案体系

应急预案体系包括应急硬件、应急预警、响应措施、善后处置等方面。

评价要求将污水应急处置措施纳入区域应急体系中,工业园内各企业和污 厂应急预案应形成联动机制。一旦废水出规超标排放的情况下,启动应急预警 措施如下:

A.通过电话通知上游企业特别是优先控制对象企业(工业园内企业)立即停产、将企 心工业废水暂时排入企业设置的事故应急池中,减少纳管污水量。

- B.工业企业优先通知顺序按"水量、污染物浓度、毒性浓度" 大化控制污染源。
- C.在响应阶段,应将废水排入事故应急池,避免超标排放,在逐步减少污水 量的情况下, 留出足够的缓冲时间, 查明原因, 及时调整系统。然后其头顶事故水池 单独处理步骤,逐步排空事故水池。

故池为整个应急系统创造了应急时间与空间,是整个响应措施 事故水池容积可采用下式进行计算。

 $V=t\times O+L\times A$ 

(5.4-1)

事故水池有效容积,

以批批批問問

t-响应时间, h;

Q一高峰流量, m/h;

L一主干管高污染区长度, m;

A一主无管高污染区平均有效水利面积, $m^2$ 。

由于本项目废水为工业园企业工业废水,各企业均在车间内设有事故水池,在项目出现超标情况下,企业废水可在企业事故池内暂存,因此本次计算、再考虑主干管内的废水。由于工业园规模较大,为了确保每家企业的有足够的响应时间,确定响应时间为 1h。

本项目一期平均流量为833.3m³/h,高峰流量系数按1.31,则高峰流量为1091.623m³/h。事故池有效容积为1333.3m³。项目拟在水解酸化池西侧、臭氧氧化池北侧设置1座容积为1000m³的事故池。同时应做好厂区内管道、导排沟的设置,避免池体应沉降等原因造成的坍塌事件,废水进入安海湾。

(2)污泥事故排放的防范对策

海水处理厂污泥经脱水处理后,应及时清运处置,采用专用密闭逐输车辆,避免 散发臭气,撒落,污染环境。

(3)污水管网系统及泵站风险防范措施

污水处理厂的稳定运行与管网及泵站的维护关系密切。应十分重视管网及泵站的维护及管理,防止泥沙沉积堵塞而影响管道的过水能力。管道衔接应防止泄漏污染地 下水和掏空地基、淤塞应及时疏浚,保证管道通畅、同时最大限度地收集区内污水。

对于各泵站应设有专人负责,平日加强对机械设备的维护,一旦发生事故应及时进行维修,避免因此造成的污水溢流入附近水体。

污水管网应制定严格的维修制度、区内企业应严格执行国家、地方有关排放标准。(4)废气处理系统事故防治措施

- ①应该制定严格巡查制度,当尾气净化系统出现故障时,应马上检修,安排专员 对环保设施进行管理与维护,加强设备巡检工作,严格保证尾气中各污染物达标排放。
- ②加强对尾气处理设施的日常维护管理,确保处理设施的运行效率符合设计要求,满足废气排放控制指标。尾气处理设施日常维护管理的主要内容有:
  - 定期检查设施的内部装置是否完好,如有缺损应及时更换或修理;
- 定期检查设施的各个装置是否完好,运转是否灵活可靠,管道是否被损堵塞,如有**战**障缺陷、发生堵塞等应及时排除;
  - 定期检查设施的电气设备是否运行良好,如有故障缺陷应及对整改处理;
- 定期检查设施的风机等运转设备是否运行平稳,润滑是否良好,必要时应检查 处理、清洗换油。

XIVE THE

- ③对操作人员进行定期培训,保证安全操作。
- (5)污水下渗污染风险防范措施
- ①建立完善、可靠、及时的地下水监控系统。一旦地下水水质出现异常,立即检查事故原因并进行补救;施工过程严格按照要求进行,尽量避免施工连接缝;如出现污水渗漏。对地下水和土壤将产生重金属污染。由于重金属在环境中是不可降解的,所以若发生渗漏,对土壤和地下水的影响是很大的,也是长期难以逆转的。因此,应定期对监测井的水质进行监测,监测因子为与污水有关的污染因子。发现异常,及时查找原因进行处理,必要时应阅库对防渗层进行修补。

制定严格的管理、操作规程,职工上岗必须经过严格培训。严格依照《城镇污水处理厂运行监督管理技术规范》(HJ 2038-2014)等相关要求进行污水处理厂建设、运行及管理。

②建立地下水水质监测、预警系统,及时发现问题,一旦发生事故应立即停止作业,并报有关部门、及时处理,将污染控制在最低的限度。如发生破裂,可进行裂缝密封来补填构筑物破损部位,以解决渗漏污染问题。

#### 5.4.2 环境风险应急预案

- 一旦项目发生事故而导致污水未得到处理而直接进入水体。其对纳污海域造成的影响是显著的。为了将这些环境风险造成的危害降低到最低,建设单位应当会同水务、环保局等部门联合制定应急预案,控制应急事态发展,最大程度地减少突发事件可能 造成的人员伤亡、财产损失和环境破坏。
  - (1)风险应急预案的原则和指导思想

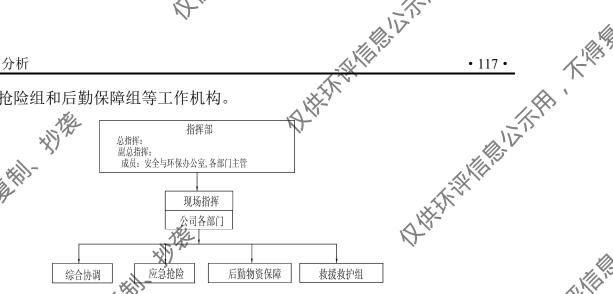
应急处理的原则: 预防为主,安全第一统一指挥,科学决策。

应急预案的指导思想:体现"以人为本"的思想,将"安全第一,预防为主"方针落到实处。一旦发生事故,能以最快的速度、最大的效能,有序地实施应急对策,最大限度减少人员伤亡和财产损失,把事故危害降到最低点,难护周围群众的生活安全和稳定,将周边水体收到的影响降至最低。

#### (2)编制依据

依据《中华人民共和国环境保护法》、《国家突发公共事件应急预案》、《城市 污水处理及污染防治技术政策》、《城市污水处理工程项目建设标准》等有关法律、 法规和规章要求,编制风险应急预案。

#### 3组织机构


①应急领导机构及工作机构

组织机构见图 5.1。突发环境污染事件应急管理工作应由晋江市委、市政府统一领导,市政府是突发公共事件应急管理工作的行政领导机构。下设通讯联络组、安全警

XIV XX

型性 1275年

戒组、应急抢险组和后勤保障组等工作机构。



在发生事故时、应急小组按各自职责分工开展心急救援工作,通过平时的演习、 训练,完善事故应急预案。各应急小组成员组成及其主要职责如下:

负责事故现场总体协调与决策。当事故发生后,实施应急救援行动,当总指挥长 不在现场时,依序由副总指挥长代替行使指挥权。

#### b.现场指挥

组织指挥现场人员实施应急预案救援行动,总指挥长达到现场后, 服从总指挥长统一指挥。

#### c.通信联络组×

负责向应急指挥部报告,及时与当地公安、消防和急救中心等部门取得联系 事负责现场的通信联络任务,按事故现场指挥部命令告知红线区周边单位及材组人员 撤离到警戎区域外。

#### d.应急抢救组

物资抢救到安全地点, 防止事态扩大。

#### e.后勤保障组

负责事故现场所需的各种抢险救援器材物资的供应和事故发生区域的救援工作 协助医疗卫生部门搞好受伤害人员的抢救:做好危险区域附近人员的疏散和重要物资 抢救工作。 ③地方机构或现场指挥机构 2.地方机构

当地政府应急救援部门为环境应急事故救援的最高领导机构

#### b.现场指挥机构

事故第一发现者首先报告事故发生部门主管,由该部门负责现场抢救指挥。

公司应急指挥部赶赴事故现场后,部门主管立即报告事故基本情况,并迅速移交现场指挥权

政府应急救援机构人员道道事故现场后,公司应急指挥部应立即报告事故的基本情况,并服从政府救援机构人员的组织协调,移交现场救援指挥权。

4)环境应急专家组

公司领导及安全与环保部门及有关技术人员组成(不少于 5 人)环境应急专家组, 负责对环境风险事故的评估等工作。

查找事故发生的原因,伤亡人数,评估因事故导致的财产损失。

评估事故对周边环境的影响程度。

总结经验教训,提出进一步防范措施和减缓环境影响的措施

(4)预防污染事故措施

了应急准备措施

a.建立应急组织机构、落实应急队员和应急物资保障、制定应急抢救工作细则。

b.建立应急事件抢救网络、与政府应急机构、消防部门、急救中心、相邻企事业单位等机构保持联系,以便在发生应急事件时能够及时互动。

②环境风险隐患排查和整治措施

a.厂区内化验X员须严格遵守《化验室规章制度》,做到规范操作,避免事故发生

b.化验人员每天须定时抽取进水口、各池体出水及总出水口的水样,避免突发性排放污染物和其它能够造成人与动植物急性外毒损害的剧毒污染物排入水体造成的危害严重事故。

c.操作人员严格按照《污水处理广运行、维护及其安全技术规程》进行操作,严禁 带电作业。

d.运行人员、维护人员每班巡视三次,发现问题及时解决,如不能解决向领导小组 汇报解决,厂内部不能解决则请专家解决。

e.领导小组人员须每天巡视一次污水处理厂运行情况,察看是否存在安全隐患。

(5)污染事故应急处置

①现场指挥部

根据处置现场需要和应急处置指挥部指令,必要时由应急处置指挥部指派人员组成现场指挥部,负责事故现场(含纳污水体)应急行动的指挥。应急深划结束,现场指挥部经上级指挥机构或有关领导批准后解散。

②事故报告

XIIX

心办公室及值班室报告或报警。

值班全在接到最初污染事故报告后,应要求报告人对污染现场进行补充报告,并 尽可能通过各种有效手段收集、核实相关信息。值班室应及时将相关信息和动态,按 并做好相应的记录。

负有组织指挥应急处置职责的现场指挥就位后,应立即全面了解和掌握现场的详 细情况,并及时将事故现场情况向办公室报告。

③应急响应/

I响应等级划分

响应等级划分以对公共安全、社会秩序和生态环境可能造成的危害与威胁程度作 为优先考虑原则。其应急响应等级分为四级:一般(IV级)、较大(III级)》重大(II级)、特 别重大(I级)。

一般、较大等级为基本响应,原则上由分中心组织实施应急处置;重大、特别重 大等级为扩大响应,需要报请市政府确定,并组织市级应急资源实施紧急处置。

II响应等级确定及启动

污染事故由必急分中心办公室根据专家组意见 等级。

- 急处置。
- 指挥、分中心有关成员单位、法律咨询组、财务资金组等相关应急组织和人员还应采 取相关行动措施实施应急处置。
- •特别重大应急行动(I级)除重大应急响应行动措施外,相关应急组织 采取其他行动措施实施应急处置。

**W**应急响应的结束

- 般应急响应。由现场指挥根据应急行动的进展情况,报应急 意后宣布应急行动结束。
  - 由应急分中心办公室主任或副主任根据应急反应的进展情况,

宣布应急行动结束。

- 重大应急响应。由应急处置指挥部总指挥根据必急反应的进展情况,宣布应急 行动结束。
- •特别重义应急响应。由应急处置指挥部总指挥根据应急反应的进 时报市委争市政府同意后,宣布应急行动结束。

④响应程序

- a.基本应急
- 初期现场勘察及紧急预处理流程

当班人员立即向指挥领导小组汇报,并在事故处理过程中随时保持与指挥领导小 组的联系,如遇危险气体泄露及火灾等事故发生后,必组成员应事先佩戴好防毒、消 防等防护用品方律进入现场。

• 预案启动事故处理流程

应急指挥小组组长负责向有关领导有关部门汇报现场情况,寻求专业部门及社会 援助、责任部门:应急指挥小组、应急救援组

建立警戒区域,根据现场事故状况及所涉及面积大小确定区域大小,应有专人坚 守。责任部门: 应急指挥小组以后勤保障组

紧急疏散,迅速将警戒区及事故现场与事故应急处理无关的人员撤离,以减少不 必要的人员伤亡。责任部门: 应急指挥小组、应急救援组

现场急救,在事故现场人体可能造成伤害为,中毒、窒息、冻伤、化学灼伤、烧 伤等,进行急救时,不论患者还是救援人员都需要进行适当的防护,防止发生继续性 损害。责任部门: 应急指挥小组、医疗救援组

事故处理,在事故发生后,应协立即调动有关人员和处置队伍赶赴现场,在应急 指挥小组统一指挥下,按照专项预案和时间处理规程要求,相互配合,密切合作,共 同开展应急事故处理工作。责任部门:应急指挥小组、各专项应急救援小组

#### b.扩大应急

现场指挥部应及时跟踪事态的进展情况,一旦发现事态有进一步扩大的趋势,有 可能超出自身的控制能力,应向环保局发出请求, 由环保局确认后启动相应预案 调其他应急资源与处置工作。

⑤突发事故应急处理流程

**26** 水管道泄漏事故:事故发生~应急启动~及时上报应急指挥组、建设局、环保 公路局、交警等政府相关职能部门,保护现场,维持秩序,收集证据,及时协调 其他相关管线单位,现场交通管制,应急物资调配,组织抢修~事态控制,解除警戒,

b.水质异常引起的事故: 事故发生~应急启动~及时让报应急指挥小组、园林局 环保局等政府相关职能部门,保护现场,维持秩序,收集证据,及时协调其他相关管 线单位,现场交通管制,应急物资调配,组织抢修~事态控制,解除警戒, 善后处理~应急结束~事故调查、分析及总结。

c. 停电引起的事故: 事故发生~应急启动公司备用的发电机~及时上报应急指挥小 建设局及区环保部门,积极联系使电部门,配合抢修,停止生产做好停产时工艺 的记录,必要时采取临时排水措施~恢复供电~应急结束。

d.污水输送受阻,泵房淹发,配电及机电设备毁损的事故:事故发生~应急启动~ 及时上报应急指挥小组及建设局,及时切断电源,积极配合相关单位抢修,人员抢救~ 事态控制,现场清理,善后处理~应急结束~恢复生产~提出书面报告。

e.中毒引起的事故: 事故发生~应急启动~及时上报应急指挥小组、建设局、消防、 医疗部门等相关单位,积极配合相关单位组织、员疏散、抢救人员、现场交通管制、 工程抢险和对有毒有害气体的监测~事态控制,解除警戒,现场清理,善后处理~应 急结束~事故调查、分析及总结。

#### (6)应急保障

①通信保障

分中心应配备能保证污染事故应急处置行动通信畅通的设 中心与有关部门之间的通信畅通。

现场各单位之间应通过各种有效手段保持

②应急力量保障

I应急力量数据库

分中心建立详细的污染事故应急

Ⅱ应急队伍和物资

应急指挥部对应急物资、设备和器械有紧急调配权。

③资金保障

污水处理厂应设立专门经费预算,专款专用, 置费用,依照国际公约和国家法律、法规的规定执

#### (7)监督管理

①建立监视和报告制度

《个应急反应体系,最主要的是制定操作性强、适应性好的作业计划,该计划对 一人也括通知、评 一心的工作主要由建设单位负责, 知指挥中心等相关单位,启动反应体系。 突发性事故的作用关系很大。主要包括通知、评价、处理决定—调动和善后处理 受信息的工作主要由建设单位负责,一旦受到发生事故信息后立即

加州

大學 风险影响分析 • 122 • 报告的格式应纳入作业计划,包括:事故(观察)的时间和地点、污染源和大致原因、 事故的概况、己采取的防止继续事故扩大的措施或行动、需要的援助等项。

定期聘请应急分中心组织有关人员进行专业培训,提高相关人员履行其职责的技 能和水平。同时应在假设的情况下进行定期演练和理论学习,以检验计划的可操作性、

一应对项目及排气口附近的工众及相关人员开展事故应急教育,并及时

综上所述,污水处理工程存在一定的环境风险,包括对附近海域的污染、对环境 空气的影响以及对地下水的影响,严重时可能导致人身伤害事故,在设计中应充分考 虑到可能的风险事故并采取必要的措施,在风管工作中加强管理,预防和及时处理风

Attended by the state of the st 大根据 The Table of the state of AHAM KIRA TANA

湖海 

划发

环境风险影响分析

#### 6 环境保护措施

#### 6.1 环境保护目标及生产管理要求

# 6.1.1 环境保护目标

(1)纳入本污水处理厂的废水处理后达到《城镇污水处理厂污染物排放标准》(GB189(8-2002) 一级A标准后深海排放。

(2)评价区大气环境质量达到《空气环境质量标准》(GB3095-2012)的二级标准;恶臭污染物达 到恶臭污染物排放执行《城镇污水处理厂污染物排放标准》(GB18918-2002)二级标准并参照执行《恶臭(异味)污染物排放标准》(DB31/1025-2016)标准(上海市地标)。

- (3)厂界噪声不超过《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准限值。
- (4)厂区污泥应委托相关单位进行转运及处置,在堆置时,要做好防淋渗漏、防产生二次污染。
- (5)污水处理厂运行时,主要废气治理设施应保证作到 100%的投运率,处理后的尾气产生的恶臭(H₂S、NH₃)的排放坚持做到"稳定达标排放"。
  - (6)满足本项目卫生防护距离要求,对周围环境不产生影响。

#### 6.1.2 生产管理要求

- (1)本项目的生产运营状况和环境管理水平,要力争达到国内同类污水处理厂生产管理的先进 k平。发挥工业区集中污水处理厂的环保效用。
  - (2)减少生产运营事故的发生频率,杜绝非正常和事故性排放。
  - (3)不能随便擅自停运,保证设施运行率达到100%。
- (4)项目运营期间的生产管理及环境管理要制度化、规范化,做到任务落实、责任落实和资金 落实。
  - (5)加强运营及操作人员的环保培训。提高大学人员的环保音识。做到爱岗勒业

# 6.2 运营期二次污染控制措施

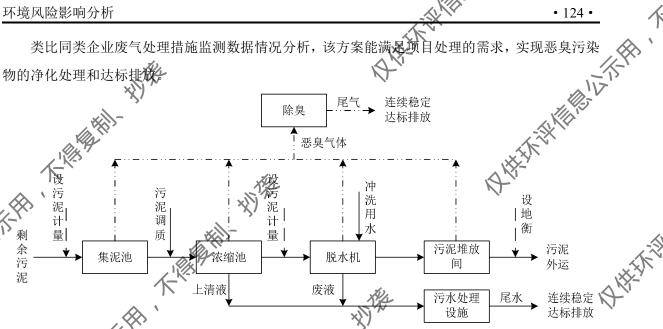
#### 6.2.1 臭气污染防治措施

(1)废气

根据《城镇污水处理厂污泥处理处置污染防治最佳可行技术指摘(试行)》(HJ-BAT-002)的要求,目前现有工程已对污水预处理段和集泥井、污泥浓缩池、污泥脱水间进行密闭、抽气和除臭,以降低污染物对周边环境的影响,具体处理工艺流程见图6.1。

恶臭气体净化工艺采用"生物除臭"工艺。将恶臭气体产生部位进行密闭处理,并通过风管和引风机将废气引入生物除臭净化后,从达到降解污染物的目的。

该在艺具有净化效果好,运行费用较低,无二次污染、运行稳定,自动化程度高、操作方便 运行成本低等特点。


该工艺对硫化氢、氨、甲硫醇、甲硫醚、二硫化碳、二甲二硫等恶臭污染物均能有效的去除净

XIIX

环境风险影响分析

类比同类企业废气处理措施监测数据情况分析,该方案能满足项目处理的需求,实现恶臭污染 物的净化处理和达标排放。

124 •



项目污泥处理设施污染防治技术工艺流程示意图

等主要设备1用1备或多台并联运行

- 处理池停产修理时,池底积泥会暴露出来散发臭气,应采及时清除淤泥;
- ③污水处理站实时投加或喷洒化学除臭剂进行除臭;
- 次污染。

本评价认为该项目大气污染控制措施是可行的。

#### 6.2.2 噪声污染防治措施及技术经济可行性论证

- (1)噪声污染防治措施
- ①风机防噪

所不同,采取的主要措施如下:在风机进出口安装消声器,

②水泵噪声控制

水泵噪声主要是泵体和电机产生的以中频为主的机械和电磁噪声。采取的措施是尽可能采用潜 水(污)泵,室内泵安装隔声罩,并在泵体与基础之间设置减震器。

噪声防治措施,主要考虑从声源处采取措施降噪。 见表6.1所示。

	表6.1 本项目设备阵架费用值算一览表									
序号	噪声源	噪声设备	降噪设施							
万 与	12.7		设备名称	数量	价格(元)					
1	粗格栅及污水	潜水泵(3 台)	隔声罩	3	3×5000					
	提升泵房	1日八次(3 日)	减震器	3	3×100					
2	加药间	加药泵(3 台)	隔声罩	3	-1×5000					
	THE STORY	加约永(3 日)	减震器	3 3	3×100					
2	鼓风机房	鼓风机(3 台)	进风消声器	3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3×4000					
3		致為加(3 日)	排风消声器	1/3	3×4000					
, <b>(X)</b>		回流污泥泵(2 台)	污泥泵井	ĺ	1×5000					
5-5	   二沉池及污泥井	四初时77亿永(2 日)	减震器	2	2×100					
, 3	—切时也汉打地开 	剩余污泥泵(1台)	减震器	1	1×100					
		周边转动刮吸泥机(2 台)	减震器	4	4×100					

表6.1 本项目设备降噪费用估算一览表

#### 6.2.3 固体废物污染防治措施

(1)污泥

污泥处置原则:无害化一减少和防止对环境造成的二次污染;资源化一综合利用,变废为宝;减量化一减少产生数量;技术成熟,操作安全、简单;投入少,运行费用低。

根据《城镇汽水处理厂污泥处理处置污染防治最佳亦行技术指南(试行)》(HJ-BAT-002)的要求,项目污泥处理过程中应做好以下内容:

- ①做好污泥计量,应按该指南设置流量冰计量污泥产生量,污泥出厂可采用地衡进行计量。为出厂污泥计量监理完善的记录、存档和报告制度。
- ②本项目污泥储池采取地埋式方式,池体应做好硬化、防渗处理,污泥存放过程中的排水应输送回污水处理系统进行处理,避免污泥堆存时影响厂址周围浅层地下水。向外运输污泥时应采用封闭车辆运输,这样在运输路途中也不会造成公害。
- ③应对栅渣、沉砂、生化污泥进行分类处理。栅渣的性质和生活垃圾类似,沉砂为无机颗粒,由城市环卫部门定期运至指定的垃圾处理中心进行处理处置。
- ④对污泥减量化的措施选择污泥浓缩、脱水工艺,将污泥的含水率降低至75~80%以下,可减少生化污泥产生量,使污泥的资源化易于实施。
- 多应控制污泥中重金属的含量,严格控制工业废水的进入,明确特征污染物的排放单位,要求排放特征污染物的单位要将废水处理达《污水排入城市地下水道水质标准》(CJ343-2010)标准和《污水综合排放标准》(GB8978-1996)中关于第一类污染物排放标准后方能排入市政污水管网。

XIV XX

⑥对于厂区废水污泥,现状工程是送瀚蓝(晋江)固废处理有限公司进行处置,今后运行中,项目废水处理后的污泥应证期(至少1年1次)企业委托危险废物检验鉴别机构进行鉴别,若鉴别结果低于《危险废物鉴别标准》,按一般工业固体废物进行处置;高于《危险废物鉴别标准》,应列《国家危险废物管理范围,按照《中华人民共和国固体废物污染环境防治法》(2005年5月)和《危险废物贮存污染控制标准》(GB18597-2023)的规定,进行收集、贮存、运输,且按国家有关规定申报登记

#### (2)生活垃圾

生活垃圾由当地环卫部门定期统一收集清运处理。

通过以上分析可见,项目的固体废物的最终处置方案是安全、可靠的,只要严格实施规范化操作,项目固体废物处置率可达100%。

#### 6.2.4 地下水污染防治措施

(1)防渗方案概述

根据建设单位提供的技术资料,项目已采取的防渗措施如下:

①重点污染防治区

污水池、污泥池防渗:混凝土池体采用防渗钢筋混凝土,池体内表面涂刷防渗涂料(防渗技术要求为等效黏土防渗层 Mb≥6.0m人K≤10⁻⁷cm/s)。

埋地管道防渗(厂区): 依次采用中粗砂回填、长丝无纺土工布、2mm 厚 HDPE 土工膜、长丝无纺土工布、中砂垫层、原土夯实的结构进行防渗。

地埋污水收集管线防渗:从上至下依次采用抗渗钢筋混凝土整体基础、砂石垫层、原土夯实的结构进行防渗。

#### ②一般污染防治区

一般污染防治区:本工程一般防渗区主要为污泥脱水、贮存间等场所。通过在混凝土,其下铺砌砂石基层,原土夯实达到防渗的目的、对于混凝土中间的伸缩缝和与实体基础的缝隙,通过填充柔性材料达到防渗的目的(防渗技术要求等效黏土防渗层 Mb>1.5m, K<10.7cm/s。

污水收集管线应进行定期检测,如发现腐蚀、损坏等,立即采取有效措施,及时修护,防止泄漏污染事故发生。加强线路人工巡检,及时发现问题,及时解决。

#### (3)地下水污染突发事件应急措施

地下排水系统是根据建设项目对地下水可能产生影响而采取的被动防范措施,是建设项目环境 工程的重要组成部分。当地下水污染事件发生后,启动地下水排水应急系统,将有效抑制污染物向 下游扩散速度,控制污染范围,使地下水质量得到恢复。

①污水处理厂区污染突发事件应急排水措施

本项目厂区地下水为冲洪积层化隙水和基岩裂隙水,埋深在原始地表面之下,含水层平均厚度 不大,单位涌水量较小,天然水力坡度 0.3%,污水管线事故状态下启动该排水预案,抽出污水排

XIIIX

环境风险影响分析

入污水收集管道,统一送污水处理厂集中处理,可将使污染地下水扩散得到有效抑制,最大限度地保护下游地下水水质安全。

一人之母。

②强化监测手段,建立自动化程度高的管线检漏、报警和定位系统,达到实时监控、准确及时报警和定位、快速处理泄漏事故,及时关闭阀门。

③为防止风险事故状态下,应阻止污染物向地下运移。对渗漏部位污水、污泥及时进行清除,将污染的污泥、污水挖出后集中处理,避免污染源扩散。

6.2.5 运营期对交通的影响

本项目运营后的主要运输为一个

一二四四八**泛通的影响**本项目运营后的主要运输为污泥运输,运输量不大,污泥在采用封闭车辆进行运输,避免洒落
气外泄的情况下,对道路交通影响不大。 和臭气外泄的情况下,对道路交通影响不大。

Att the think of the state of t Alternative like the second of 

圳菜

湖湖

# 7环境管理、环境监理与监测计划

#### 7.1 拟建项目环境管理总体要求

本项目作为接纳周边工业园废水集中处理的污水处理厂,具有处理量大、水量有波动、可生化性差筹特点,必须采用严格的环境管理手段,按照《建设项目环境保护事中事后监督管理办法(试行)》(环发[2015]163号)的要求,有效控制危废处置过程的二次污染和突发性的事故造成的次生环境污染影响。为此,提出总体环境管理目标。

#### (1)事先纳入环境管理的要求

项目前期的可研、初步设计阶段应严格执行《厌氧-缺氧-好氧活性污泥法污水处理工程技术规范》(HJ576-2010)、《城镇污水处理厂运行监督管理技术规范》(HJ2038-2014)、《污泥混凝与絮凝处理工程技术规范》(HJ2006-2010)及《城镇污水处理厂臭气处理技术规程》(CJJ/T243-2016)等相关规范、文件的相关要求进行方案选择、工艺设置和总图布置,并落实环评阶段提出的各项环境保护措施。

#### (2)事中环境管理的要求

本项目事中环境监督管理的内容主要内容是按照经过晋江市环保局拟批准的环境影响评价文件及批复中提出的环境保护措施情况,全部落实在项目工程设计和施工方案中,并通过施工期环境监理和环境监理给予督促检查,佐证落实情况。

#### (3)事后环境管理的要求

各项生产设施建成投入运营后,严格遵守环境保护法律、法规和主动接受当地环保部 门的监督管理。配套建设的各类环境保护设施要保证运行率,不得擅自停运或以其它不正 当理由进行不正常运行。充分发挥多点、多源、多方式的在线监控手段等的作用,同时利 用完整的污染物处理设施物料投运数量的台账记录、环保设备保养及运行工况记录、岗位 值班记录等说明环保设施的投运率,采用自动在线监测设备、常规监测设备、地下水观测 井监测相结合的手段,实施掌握环保设施的处理效率,发现问题及时给予处理和解决。企 业运行一段过程后可以适时开展环境影响后评价工作,进一步分析和查找本企业运行过程 中存在的环境问题。

#### 7.1.1 环境管理人员及主要职责

(1)施工期环境管理机构及主要职责

设置环境管理专职技术人员或机构负责项目前期、施工期环境管理。建设单位应对施工单位的施工行为、过程进行监管,并将施工期间的挖方处置、防噪措施、防尘措施、冲洗、施工时间等的合理安排落实在施工合同中,取得当地环境保护行政部门的指导和帮助。 施工期环境管理的主要职责:

①宣传和执行中华人民共和国环境保护法、中华人民共和国水污染防治法、泉州市及 晋江市环境保护等有关规定。

XIIIX

- ②制定施工期的环境管理和环境保护行动计划,包括施工期间的环境保护措施与方案 并将施工期环境保护方案纳入到施工、运营过程,安排专人负责进行监督、落实监测计划 等。
- ③按本报告书所提的环保工程措施与对策建议,与施工单位签订环保措施责任书,并负责监督检查各类施工作业执行本报告提出各项环保措施的落实情况,确保建设项目主体工程与环保措施"三同时"。
- 《全制定施工期运输扬尘、废水临时收集处理与利用、固体废物收集处置及生活垃圾收集处置等各类计划,并组织实施或纳入施工期环境监理计划中。
  - ⑤处理日常各种与环保有关事宜,及其安全工作事宜。
  - ⑥处理施工期运输扬尘、噪声污染纠纷事件。
  - ⑦处置其它不可预知的环境问题。
  - (2)运营期环境管理机构及主要职责

建设单位应完善环保机构建设,负责公司的日常环境管理工作,包括岗位培训、排污量统计年报、运行台账、落实环保设施的维护、维修及设施的正常运行等事宜。负责人应由了级干部担任,编制 2~3 人。环境管理机构的主要职责如下:

- ①不断跟踪和掌握国家和省、市出台的各项环境保护方针、政策和法规,及时反馈给 企业高层领导,对照检查本企业需要更新改造的内容或提出设备、工艺的改造计划。
- ②按照当地环境保护行政部门给本企业下达的环境保护目标责任书,结合企业实际情况,制定出本企业的环境保护目标和实施措施,落实到企业年度计划。
- ③负责监督环境保护实施计划的编写,负责监督环境影响报告书中所提出的各项环保措施的落实。
- ④负责公司所有环保设施操作规程的制定,监督各环保设施的运转和维护管理。对于 违反操作规程而造成的环境污染事故及时进行处理,消除污染,对事故发生原因调查分析, 并对有关负责人及操作人员进行处理,同时提出整治措施,杜绝事故的发生。
- ⑤领导和组织实施本公司的环境监测、确保大气污染物达标排放、监督废水处理达标排放、控制厂界噪声达标等,建立公司的污染源档案,进行环境统计和上报工作。
- ⑥加强企业所属区域的绿化工作,认真贯彻"准开发谁保护,谁破坏谁恢复,谁利用 谁补偿"和"开发利用与保护并重"的环境保护方针。
- ⑦负责提出、审查有关环境保护的技术改造方案和治理方案,负责提出、审查各项清洁生产方案和组织清洁生产方案的实施。
- 个 ⑧有计划地做好普及环境保护基本知识和环境法律知识的宣传教育工作,组织企业内各类人员进行环保知识的培训和环保知识竞赛,提高企业职工,特别是厂级干部的环保意识和环保法制的观念。

XIX

#### 7.1.2 建设期环境管理

(1)可行性研究阶段

在项目的可行性研究阶段,业主应做的环境管理工作是:按规定委托有资质的单位做好编制该项目的环境影响报告书,向环保主管部门申报,请予审批,将环保措施纳入可研报告。从目前环评进展情况来看,该公司在前期工作中在这方面已做的到位了,反复与环评单位沟通,并接受环产单位提出的环保措施修改方案等。

#### (2)设计阶段

项目建设单位应要求设计部门应将环境影响报告书提出的及审批意见规定的各项 环保措施列入设计和投资概算中,对环保措施设计方案进行审查,及时提出修改意见。

#### (3)招标阶段

项目业主应在招标阶段对承包商提出施工期的环境保护实施计划,并向承包商环保管理者签订环境管理的承包合同。建设单位应关注环保设备的采购,与制造商密切沟通联系。切实使用性能可靠的环保设备。

#### (4)施工阶段

重点监督、检查施工单位环保设施的落实情况,并采取点、线、面结合的方式对施工全过程中的环境保护进行监督、检查和指导。可委托有资质的专业部门进行施工期的环境监理,同时注意恢集当地居民的诉求。施土期环境管理主要内容有:

- ①防止水土流失、严格按批准的水土保持方案要求进行施工,做好本项目的水土保持工作。对于违规施工的,应及时予以警告和制止;对于造成严重植被破坏、水土流失或其它生态破坏者,应追究责任。
- ②注意对环境敏感目标的保护。要监督检查施工对周围环境敏感目标的影响,要求施工单位采取必要的污染防治措施、防止施工扬尘、弃渣等环节对厂址周边造成的污染影响,包括工业区道路面的污染。
- ③对突发性的环境污染事故应立即采取应对措施,并及时向有关部门反馈、通报,做好善后工作。注意控制设备调试阶段的吹管、试压等环**方的**噪声影响。
  - ④配合有关部门做好施工期间的水、气及声环境的监督监测工作。
- ⑤所有的监督检查计划、检查和处理情况都应当有现场的文字记录,并定期总统 归档。

# (5)调试阶段

②组织人员培训学习,掌握运行参数、操作规程、安全防范措施和总急处理事项。 ②严格控制进水水质和进水量(水量由小到大逐渐提高),确保调试阶段污泥接种及培养工作,调试前应设置完善的实验室和人员配置,确保调试和启动阶段对各主要阶段的水质进行测定,以便修正完善操作参数和操作规程,保证后续工作正常稳定运

W THE

行。

- ③建议项目应急换案与集成电路工业园企业形成联动机制,调试期间若出水不达标应立即通知相关企业,停止本项目进水,将尾水回流至水解酸化池或者生化池水不得超标排放。
- ④二次污染防治措施方面应重点观测检验废气处理设施有效性、构筑物的防渗措施是否合格。
  - (6)竣工环保验收阶段
- ①检查施工所在区域的质效、生活垃圾、工地平整的清理情况是否按照规范操作,检查施工临时使用的工棚、料场、仓库的清退及恢复情况,施工后期占用场地的恢复情况等。
  - ②验收与主体工程同步进行的绿化工程、水体保持工程是否完善。
- ③应将施工阶段的环境管理和保护工作,工程所在地的现场检查、监测记录进行汇总、编制、统计,完成施工期的环境管理工作报告,报相关部门并归档。
- ①环保设施试运行合格后,组织专家及相关单位对该项目进行环保竣工验收,经 验收合格后方可正式投入营运期。
- ⑤对于那些隐蔽性工程,如地下污水收集管网、地下污水池、污泥池防渗或防腐设施等,应在施工期间通过环境监理留下施工方式的记录。 已备竣工环保验收期间作为参考。

#### 7.1.3 运营期环境管理

营运期的管理工作的重点是各项环保措施的落实,环保设施运行的管理和维护, 日常的监测及污染事故的防范和应急处理。

#### (1)分级管理

实行分级管理、建立分级考核制度。制定本厂污染总量控制指标、能耗利用指标、 "三废"综合利用指标、污染事故率指标等多项考核指标,并将各项指标按照各自不 同的管理职能分解到工段、污水处理站、化验或环境检测家等部门。

- (2)生产过程环境管理
  - ①建立环境管理体系,不断提高环境管理水平
- ②生产过程应建立污泥产生情况台帐,以便控制并统计污泥产生情况和及时外运处置(理)。对污水排放口进行在线监控,建立污染防治联动系统,以便保证废水达标排放情况。出现故障及时处理。
- ③要提高员工的环保意识和专业生产水平,加强环保知识教育和技术培训,不断 开展岗位技术培训和提高员工操作技能。
  - ④加强厂区的绿化建设和管理,改善本厂的生态环境,实现厂区绿化指标。绿化

XIIIX

建设的重点是厂区周边的区域开展生态恢复与修复,厂区道路两侧种植行道树。

#### (3)环保设施管理

加强对尾水处理构筑物、废气处理设施等环保设施的运行管理,制定详细的实保设施管理计划或手册。对环保设施采用定期维护、检修、保养工作,制定环保设施的操作规程、对于环保设施的操作人员必须经培训才能上岗,以保证各环保设施的正常运行。

# 7.2 环境监理

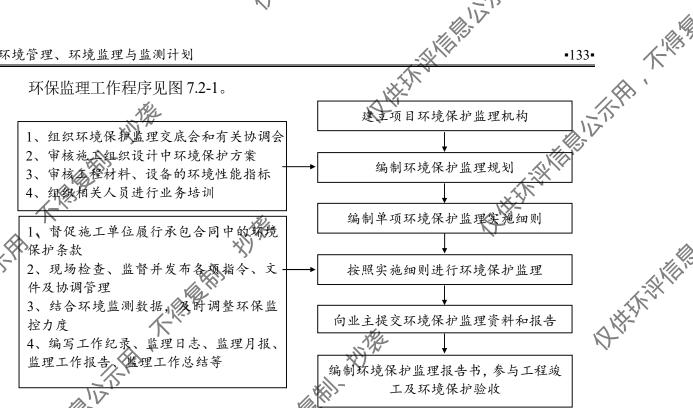
环境保护监理是指具有相应资质的监理企业,接受建设单位委托,承担其建设项目的环境管理工作,代表建设单位对承建单位的建设行为对环境的影响情况进行检查,并对污染防治和生态保护情况进行检查,确保各项环保措施落到实处。

#### 7.2.1 环境监理工作的落实

建设单位在工程招标时应包含环境监理的内容。建设单位在与施工单位签订工程建设合同时,合同中应包括环境保护的内容,明确如发生环境污染或生态破坏等环境问题时,施工单位应承担的责任及补救恢复措施。

建设单位在与施工单位签订工程建设合同时,应同时与环境保护监理单位签定施工期环境监理的合同,环境监理合同应明确环境保护监理工作范围,依容、方式、目标及环保监理单位的权力、义务,依环境监理工作能发挥应有的工作。

#### 7.2.2 环境保护监理的依据


- (1)国家有关法律、法规:如《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、《中华人民共和国大气污染防治法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国环境噪声污染防治法》、《中华人民共和国水水保持法》。
- (2)国家有关的条例、办法、规定、如《建设项目环境保护管理条例》、《关于加强 自然资源开发建设项目的生态环境管理的通知》等。
  - (3)地方性法规、文件及相应的环境保护规划。
  - (4)项目的环境影响评价报告书及批复。
  - (5)工程设计文件。
  - (6)监理合同及工程建设合同。

# 7.2.3 环境监理应遵循的原则要求

从事工程环境保护监理活动,应当遵循守法、诚信、公正、科学的准则。确立环境保护监理是"第三方"的原则,应当将环境监理和业主的环境管理、政府部门的环境监督执法严格区分开来,并为业主的环境管理和政府部门的环境监督服务。而工期开始之前即委托环境监理单位。

# 7.2.4 环境监理的工作程序

XI)



#### 图 7.2-1 环保监理工作程序流程图

#### 7.2.5 环境监理的工作内容

#### (1)设计阶段

根据建设项目环评报告及其批复审核相关设计文件和施工图《对发现的问题以《环境 监理联系单》形式告知建设单位,需要时提出改进建议。主要内容包括:

- ①主体工程设计文件审核:对工程设计文件与环评报告及其报复的相符性进行审核, 》。 包括工程选址、总平面布置、生产工艺、生产设备 提醒建设单位履行相关环保手续。
- ②配套环保工程或设施设计文件审核:对配套环保工程或设施设计文件与环评报告及 其批复的相符性进行审核,未落实的要及时提醒建设单位增加相应设计内容;关注环保工 程路线选择、设计方案比选等环节、提供环保咨询服务;针对采用的管理技术是否先进, 治理措施是否可行,跟踪污染物的最终处置方法和去向等,
  - ③编制设计文件环境监理核查报告。

设计阶段的环境监理建议以留存的设计施工资料

#### (2)施工阶段

本阶段环境监理以建设项目环评报告及其批复为依据,针对项目批建符合性、环保 同时"、施工行为环保达标措施、环境保护工程和设施监理、事故应急措施、环保管理制 度等承展工作,特别关注隐蔽工程的施工内容。主要内容如下:

#### ①施工营地

a.施工营地污水和洗车废水,不得直接排入周边环境,废水进行隔油沉淀处理。污水 工场地开挖的土方应设置专门的对方场地堆存,以备后续利用。

b.施工营地应设垃圾桶,集中收集施工人员生活垃圾。地表清理物(含地表植被、苗圃等)应有专门的场地用以处置,不得随意丢弃。

- c.施工场地噪声应当符合国家规定的建筑施工场界环境噪声排放标准。
- d.加强对污水处理构筑物防渗工程等各施工阶段的施工监理,应确保地下水量点防治 区施工质量保证及质量监督,并做好施工监理记录档案,并明确各阶段责任主体,从严把 好质量关。
  - ②其它工程环境监理要求
- a.建设施工过程中,应当采取措施,控制扬尘、噪声、废水、固体废物等污染,防止或者减轻施工对环境的破坏。
  - b.将弃土、弃渣于指定地点堆放,不得随意丢弃。
- c.做好重点防治区地下水防渗工程,加强对污水处理构筑物防渗工程等各施工阶段的施工监理,并做好施工监理记录档案。地下防沙工程监理主要内容如下:
- 施工承包方应根据工程的防渗要求,提供较为详细的施工方案及其节点详图,严禁施工单位无图凭经验施工。
- 防渗材料进场后,应检查材料出厂合格证、质保证、备案证、生产许可证、准用证等。合格后方准使用。
- 主要材料如水泥、锅材、防渗材料等进场后,除按上成要求验收外,还应按规定在 监理的见证下取样复减,经复试合格后方准使用。
- 审核、检查施工单位的施工设备和检测仪器的规格型号和性能,确保进场的施工设备满足防治材料的施工要求。
  - 基坑开挖产生的泥沙水应经过沉淀处理后排放至厂区现有雨水管道,不得随意排放。
  - 水泥等散料应采取苫盖措施, 控制扬尘。
  - 地下污水管道预埋应监理管道接缝的密闭性措施, 防止漏水
  - 污水处理构筑物的防腐、防渗、防泄漏工程的施工监理。

#### (3)调试阶段

①对主体工程及配套环保设施调试情况、施工方撤场后场地清理情况等进行调查汇总及时掌握建设项目主体工程试运行进展情况、各主要原辅材料消耗情况。工艺或二次污染防治措施如有发生调整,及时提醒建设单位补充各项相关环保手续;密切关注其非正常工况的排污情况,如出现较为严重的排污现象,及时提醒建设单位委托设计单位针对非正常工况的排污增加设计污染治理设施。

及时掌握建设项目各类环保设施调试运行情况,协助建设单位解决项目建设过程中出现的环保问题,提供咨询服务。减少污染物排放和治理稳定达标。设备调试阶段应控制废水非正常排放。

XIII THE

A SHARE

41)-11)³

- ②督促企业严格执行各类环境管理制度、事故应急预案等要求。 ③对新发现或遗留的问题根据性质向建设单位提交《环培》。 《环境监理通知书》,提出整改建议。 ④按要求填写环境监理。 ● 135・
  ● 首促企业严格执行各类环境管理制度、事故应急预案等要求。
  ③ 对新发现或遗解的问题根据性质向建设单位提交《环境监理联系单》或向施工承包:《环境监理通知书》,提出整改建议。
  ④ 按要求填写环境监理日志,定期向建设单位报送环境监理月报。
  ⑤ 编码项目环境监理总结报告。
  ⑥ 协助建设单位进行补充落实。在环境行政主管部门组织的验收审查。
  况,对于验收会提出的问题,替促建设单位进行

项目拟采取的环境保护措施、运行参数、排放污染物种类、排放浓度、总量指标、排污口信息、污染物排放清单见表 7.3-1。

Alternative like the second of WHITE THE WAR 

大型 大型

圳菜

湖海

				W.	.Zv.	Z	<b>X</b> -'	
			1/25				, K	
	环境管理、	环境监理与监测计:			337		136	•
•			&\ \	表7.3-1工程	污染物排放清单一	 览表		-
•	序号	污染物排放清单	\^`		管理要求及			
	1	工程组成	污水厂总规模为4× 池、水解酸化池、	A ² O生物池、配水井	·及污泥泵房,二沉池、 :消毒池、污泥浓缩池、	处理2×10 ⁴ m ³ /d, 主要项目组成含 后置高效沉淀池、中间提升泵 方况脱水设施及配套公辅设施	↑调节事故池、前置高效沉淀 房、臭氧接触氧化池、V型滤	NH IN
	2	原辅料	在日上は田里(1/1)	1 1 日	原料组分		→ サル/壬人尼公)	1
	2.1	PAM(阴)	年最大使用量(t/a) 47.09	计量单位 t	硫元素占比 /	成份及占比	其他(重金属等)	XX
	2.2	PAC(10%)	5840	t		/	/	
•	2.2	除氟剂	2920	t	11/4	1 11/2	/	M.
<	214	氢氧化钠溶液 (32%)	876	t		/ */5"**	/	*
•	2.5	污泥调理剂 (三氯亚铁)	255.50	t	/		/	
•	2.6	硫酸 (98%溶液)	115.05	t 🛇	/		/	
	2.7	乙酸钠	1095	t/_	/		10.	
	2.8	CaO(固体) 次氯酸钠(10%液	638.75	1/2	/		XX	
	2.9	人	730		/		XI)	
	2.10	PAM(印)	12.78	//// t	/	/		
	3	污染物控制要求			污染因子及污	5染防治措施 10.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	<u> </u>	
		·求污染物种类	污染因子	杂治理设施 运行			境质量标准 总量指标	Zs).
	3.1.1	生活污水	COD、氨氨		<b>废水</b>	Tel 3	<b>添刀入北左</b> 郊	17
X	3.1.2	工业应水	pH、CODer、物化/	生化预处理+ 上理+深度处理	排流 排流	ラロ 10010 2002) 一切 A 左 标	灣及金井东部 执行《海水水质 准 097-1997)第二 准 <u>金</u>	) **
<u> </u>	3.2			1/2	废气	<u></u>	N/A	
	3.2.1	细格栅事故池及调节池、前置高效沉 淀池、水解酸化及 A ² O生物池(预缺 氟、厌氧、缺氧段)	NH ₃ 、H ₂ S、管道 ² 臭气浓度等 后通过	. 统进行处理, m ³ / E15m高排气筒 H=1:	60000 h; h; sm; 排放 排放	- 期 排 放 执 行 《恶臭污染物 准》	二级标准; H ₂ S参照《环 向评价技术导	
		`}`	Z, 1		TIM LANGE TO THE PARTY OF THE P		, Y ·	
	\$ " <u> </u>		XIII X		V			

环培答理	环境监理与	此测计划

环境管理、	环境监理与监测计划		, , , , , , , , , , , , , , , , , , ,	N. C.	١	AKY-	137	
3.2.2	等 污泥浓缩池 污泥 脱水机房	管道	收集,通过抽风,连续运行; 将废气引入2# 风量 系统进行处理, 16000m³/h; 过15m高排气筒 H=15m; 排放 D=1m	高空有组织 排放 排放 设置		(HJ2.2-2018) 附 录 D 参考限值	无组织排放总量: NH3:0.0939t/a H ₂ S:0.0028t/a	- 
3.3	噪声	噪声基础	减震、厂房隔 白天连续 声、消声 24h	1 9%	《工业企业厂界环境 噪声排放标准》(GB 12348-2008)中3类标 准	(CD2006 2009) 中始	/	DHILL STATE
3.4.1	格栅、办公生活垃圾		1清,经鉴定后依据鉴定结记录来源及产生量,去向及生活垃圾等由环卫部门清:	运	标准》(GB 18599-2020	0)	/	
4	风险防范措施	<b>设置1666.7m²事故</b>	池,在主要构筑物等位置设	及置相应自动监测仪》 期演练	表表 道 确保及时调整	运行参数; 定制事故	区总预案并定	

NHI WALLEN TO THE TOTAL OF THE PARTY OF THE 湖 

XIII THE

#### 7.3.2 公开信息内容

建设单位应定期的社会公开项目的污染物排放情况。建成运行后除自动在线监测数据与当地环保行政主管部门联网外,并通过污染源信息管理平台定期公布污染源产排信息,包括流量、COD、氨氮、TN、TP等。

#### 7.4 环境监测计划

# 7.4.1 施工期监测计划

(1)大气环境的监测计划

站位布设:在施工厂界下风向 50m 内。

监测项目: TSP 或 PM no。

监测频率: 监测时间应先在土石方施工的高峰期 连续监测 3 天。

(2)声环境监测计划

监测站位了施工场界。厂界四周布设若干监测点位。

监测参数:测定 Leq(A)、同时测定 Lin和 L₉₀。

监测频率:监测时间应选在施工高峰期,不同施工阶段昼间和夜间各测一次。

(3)监测数据的管理

监测采样、分析方法按常规环境监测要求执行。委托监测单位根据工程施工进度 进行监测,若有异常情况恢及时通知当地环保局,以便采取相应对策措施。

#### 7.4.2 运营期监测计划

根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污单位自行监测技术指南 水处理》(HJ1083-2020),并结合各环境要素导则要求,确定各环境要素的监测计划如下。

- (1)废水排放监测
- a.监测点位: 进水总管口和废水总排放口(日常监督性监测)。
- b.监测指标和监测频率:详见表 7.4-1。
- c.在线监测: 进水总管自动监测数据需与晋江市生态环境主管部门污染源自动监控系统平台联网。
  - (2)废气排放监测
- a.监测点位:除臭装置排气筒出口和无组织监控点(厂界四监测点可按照风向变化调整设置)。____
  - 上批测项目及频次:除臭装置排气筒出口:臭气浓度、 $H_2S$ 、 $NH_3$ ,每半年采样监测 1
- c.厂界无组织监测:厂界或防护带边缘的浓度最高点(通常位于靠近污泥脱水机房附近):臭气浓度、H₂S、NH₃、每半年委托监测 1 次;厂区甲烷体积浓度最高点(通常位于格

河港

Att A THE RESIDENCE OF THE PARTY OF THE PART 栅、初沉池、污泥消化池、污泥浓缩池、污泥脱水机房等位 次。

- (3)厂界环境噪声监测
- a.监测站位: 厂界四周,设置4个点位。
- b. 监测参数: 测定 Leq(A)。
- 每季度委托监测1000 每次昼夜间各1次。
- (4)污泥监测
- a.监测参数: 有机物降解
- b.监测频率:每月度委托监测1次。
- (5)地表水环境质量监测
- a.监测站位从区周边地表水环境,设置监测点位详见第4章图4.9。
- 化学需氧量、五日生化需氧量、NH3-N、TN、TP、石

监测频率: 每年丰、平、枯水期至少监测一次。

(6)地下水监测

图 4.9)。

b.监测项目: 具体见表 6.2。

重金属污染物每季度1次,如发现地 规污染物每月取样监测 1 次 下水质出现变坏现象时,加大取样频率。

运营期监测计划内容见表 6.4-1。

表 7.4-1 运营期环境监测内容一览表

			1 *	
监测内容	监测对象点位	监测项目	监测频率	监测方式
62	废水处理设施进口	流量、化学需氧量、氨氮	// <u>`</u> X`,—	自动监测
V.	及小义	TN, TP	每日1次	自行监测
,		流量、PH、水温、化学需氧量、NH、N TN ^a 、TP	_	自动监测
废水	废水处理设施出口	悬浮物、色度、BOD5、动植物油、石油类、 阴离子表面活性剂、粪大肠菌群数	每月1次	自行监测
		总镉、总铬、总汞、总铅、总砷、六价铬	每季度1次	委托监测
	ZV,	其他污染物	半年1次	委托监测
	再水排放口	pH、COD、SS、NH3-N	每月1次	自行监测
	废气处理设施出口	NH ₃ 、H ₂ S、臭气浓度	半年1次 🗸	委托监测
废气	<b>无组织</b>	NH ₃ 、H ₂ S、臭气浓度	半年1次//	委托监测
In.X	7 儿组织	甲烷	1年1次	委托监测
· 深声/	厂界四周	等效声级 L _{Aeq}	每季度 [ 次	委托监测
地表水	厂区周边地表水环境	PH、悬浮物、化学需氧量、五日生化需氧量、NH ₃ -N、TN、TP、石油类等	每年半、平、 枯水期至少 监测一次	委托监测
地下水	厂区内监控井3个	pH、总硬度、溶解性总固体、高锰酸盐指	每月1次	厂内监测

		Ø KATAN.		A TO THE PARTY OF	•
环境管理、环	<b>、</b> 境监理与监测计划		-51/		• 140 •
	-d.	数、氨氮、硝酸盐氮、 酚、硫酸盐、氟化物、 等	氯化物 天肠菌群		厂内监测
	***)	总铬、六份	<b>个</b> 各等	每季度1次, 发现地下水 质出现变坏	
		. 有机物降		现象时,加大 取样频率 每月1次	委托监测
污泥	污泥 —	根据提出毒性指	标进行检测	1年次 年度或季度	委托监测

关于加强污染源环境监管信息公开工作的通知(环发[2013]74号)"文的

事故造成的后果和损失等进行统计, 保护设施正常运转,坚决杜绝事故性排放。

# 7.5 总量控制和排污口规范化管理

#### 7.5.1 总量控制

(1)总量控制发

本项目的总量控制和企业自控指标的项目为:

废水污染物: COD、NH3-N、总磷等

废气污染物: NH₃、H₂S。

- (2)总量控制技术原则
- ①满足达标排放和当地环境承载力的要求;
- ②满足环境功能区达标的要求;
- ③满足现有排污总量指标的要求。
- (3)污染物排放总量控制指标

根据工程分析,本项目主要污染物排放情况具体见表 2.5-7, COD 排放量为 67.5t/a、 法》(本发[2014]197号),项目所需总量建设单位应在投产前在排污权交易平台购买相 K-ILLE HID-瓜排污权指标。

#### 7.5.2 排污口规范化管理

排污口规范化管理,是实施污染物排放总量控制的基础护工作之一。对于强化污染源的现场监督检查,促进排污单位强化环保管理和污染源治理,实现主要污染物排放的科学化、定量化管理都有极大的现实意义。

(1)排污,规范化要求的依据

关于证污口规范化要求的依据主要有:

- ①《关于开展排污口规范化整治工作的通知》,原国家环境保护总局,环发[1999]24
- ②《排污口规范化整治技术》国家环境保护总局,环发[1999]24号;
- ③"关于转发《关于严极排污口规范化整治工作的通知》的通知"福建省环境保护局,闽环保[1999]理3号;
- ④ "关于印发《福建省污染物排放口规范化整治补充技术要求》的通知"福建省环境保护局,闽环保[1999]理 8 号;
- ⑤ "关于印发《福建省工业污染源排放石管理办法》的通知"福建省环境保护局,闽环保[1999]理 9 号。
  - (2)排污口规范化的范围和时间

根据福建省环境保护局闽环保(1999)理3号"关于转发《关关并展排污口规范化整治工作的通知》的通知"文的要求,一切新建、改建的排污单位以及限期治理的排污单位,必须在建设污染治理设施的同时,建设规范化排污口。各类排污口必须规范化设置和管理,但同时规范化工作应与污染治理同步实施,并列入污染治理设施的竣工验收内容。

- (3)排污口规范化的内容
- ①排污口的规范化建设
- a.废气排放口的规范化建设

拟建工程的废气排放口主要是感臭气体处理排气筒等,应设立警告图形标志牌。

- b.固体废物
- 一般工业固体废物应设置规范化标志牌及警示标志。
- ②对排污口的规范化管理
- a.建设单位应如实填写《中华人民共和国规范化制污口标志登记证》的有关内容,和环保主管部门签及登记证。

b.建设单位在排污口处设立的排污口标志牌要有统一的标识提示符号,以配包、明显为目的,以警示周围群众,并规范设置采样平台。要按照《环境保护图形标志排放口(源)》(GB 15562.1-1995)的有关规定,在厂区"三废"和噪声排放点设置明显的标志,规范排污口的标志,排放口图形标志见表 25-1。

XIV XX

#### 表 7.5-1 排放口图形标志一览表

		12	7.3-1 排从口图形物	小小一个水	
Ī	排放口	废气排口	噪声源	般固废	危险废物 //
	图形符号		D(((		A PARTIE OF THE

c:建立排污口档案,内容包括:排污单位的名称、排污口的性质、编号、排污口的位置、主要排放的污染物的来源、种类、数量、浓度、排放规律、排放去向以及污染治理设施的运行情况等进行建档管理、并报送有关主管部门备案并接受监督、检查与指导。做好排污口海域使用论证及申报工作。

# 7.6 排污许可管理相关要求

项目应根据《排污许可证申请与核发技术规范 水处理(试行)》(HJ978-2018)的相关要求,申领排污许可证。

- (1)建议按分期建设的构筑物,设置生产线编号,按生产线对各污水处理设施进行编号,并填报相关参数。
- (2)项目厂外收水范围为福建集成电路工业园园区内企业尾水。厂内废水包括污泥脱水间废水、反冲洗废水等。
- (3)设置规范化的废水排污口,排污口编号根据 HJ608 进行编号并填报。化学需氧量、 氨氮、总磷和总氮纳入货可排放量污染物,排污口类型为主要排放口。
- (4)应对废气治理设施进行内部编号或根据 HJ608 编号并填报。其中臭气浓度、硫化 氢和氨应纳入许可排放浓度污染物,排放口类型为一般排放口。厂界无组织排放氨、硫化 氢和臭气浓度以及厂区内甲烷的纳入许可排放浓度污染物。
  - (5)污泥应明确去向,并做好污泥转移合账记录工作。
- (6)在平面图上标明比例尺、厂界、主要污染治理设施名称及位置、进水口和污染物 排放口位置等。
  - (7)定期开展监测,具体见表 7.2。
  - (8)应按排污许可证规定的时间提交执行报告。

## 7.7 拟建项目环境管理要求

- (1)建设前期环境保护审查、审批手续完备,技术资料与环境保护档案资料齐全
- (2)环境保护设施及其他措施等按批准的环境影响报告书和设计文件的要求建设成或落实, 水土流失防治工程得到落实。
- (3)各项生态保护措施按环境影响报告书规定的要求落实,建设项目建设过程中受到 破坏并可恢复的环境已按规定采取了恢复措施。
  - (4)环境影响报告书提出需对环境保护敏感点进行环境影响验证,对施工期环境保护

XIVE THE

# DHAR THE TENED TO THE PARTY OF THE PARTY OF

			A.P.	1/2×1	
			V	· 143 ·	
	环境	管理、环境	竟监理与监测计划	•143	
	措施	落实情况	!进行工程环境监理,已按规定要	求完成。	♠ `
			大内容, 项目主要环保管理内容见	表 7.4。	作,
			表 7.4 建设项目环境保	护管理要求一览表	7
	<u>一、</u> 序号	总体要求,	环保措施内容	管理要求	
	1.1	工程党工	"三同时"落实情况	按环评报告及设计部门提出的要求验收,按环评文件及排放档案为主	
	1.2	风险防范 措施及应 急预案		配备风险应急设施设备,制定环境风险应急预案,报环保行政管理部门备案,定期实行演练	<u> </u>
TO ALLERY	1.3	施工期环 境监理	在项目设计、施工、调试期间开展施工期环境监理	检查落实情况,特别关注隐蔽工程的防渗措施 建设情况	
-31/11/15	1.4	环境管理	工作计划及管理规草制度	检查落实情况	A HELDE
	1.5	环境监测	建立运营期环境监测计划,污水处理 站出口等的在线监测系统,并与当地 环保部门联网	检查落实情况	7.
		工程环保管	117	# T	
	序号	类别//	环保措施内容	使理要求 执行标准:《城镇污水处理厂污染物排放标准》	
	4		大.`	(GB 18918-2002)一级 A 排放标准;	
,	∆2.1	水污染	污水处理能力2万m³/d的污水处理 厂,处理(工艺为"预处理+生化处理	初四、八月俗、心俗、心情、心水、心化、心	
\	V.	防治	工艺+深度处理")工艺	照、BOD5、忘贰、SA、AOA、本胺类、硫化初 监测点位:进出口	
			SUMPLE TO SERVICE STATE OF THE	总排口总量控制: 水量≤164.25 万 m³/a、COD ≤82.1t/a、NH, N≤8.2t/a	
			细格栅、高效沉淀池、水解酸化池、 改良 AO 生化池、二沉池、污泥井、	恶臭污染物排放执行《恶臭污染物排放标准》 (GB14554-93)表 2 中排放标准	N. T.
	2.2		改良 A O 生化池、二沉池、污泥井、污泥脱水车间加盖或密闭,废气采用一套"生物除臭"设施处理后通过1	监测国子: NH ₃ 、H ₂ S、臭气浓度	
		废气防治	根 15m 排气筒排放	监测点位:进出口	
	2.3		定期喷洒植物除臭液, 无组织废气定	恶臭污染物执行《恶臭污染物排放标准》 (GB14554-93)二级标准行监测因子: NH ₃ 、H ₂ S、	
			期检修设备,更换老旧设备	臭气浓度、甲烷 监测点位: 厂界	>
X	₹V.2.4	固废处理	采用固体废物分类收集、无害化处理 等方式对生活垃圾、污泥等进行无害	厂区内固废收集、暂存等场所符合《危险废物 贮存污染控制标准》(GB 18597-2001)及修改单、	:::\\-
*//		处置	化处理处置	以及《关于发布<一般工业固体废物贮存、处置 场污染控制标准 (GB 18599-2020)等相关要求	MA TO
NA N	2.5	四十二油	  高噪声设备采取隔声、消声、减振等	厂界噪声符合《工业企业厂界噪声排放标准》 (GB 12348-2008)3 类标准	K-1884 #111-
THE STATE OF THE S	2.5	噪声污染 防治、地	4	监测因子、Leq(A) 监测点经: 厂界四周	1
	2.6	下水污染 防治	地下水防渗措施的落实	根据环评提出的要求,落实重点防渗区对应的基础防渗措施	
	2.7	×	地下水监控井的布置		
		WHIII-		厂(场)区内监控井3分	
	1	X 7		HE TO THE STATE OF	
制态	,		大塊塊地	A.	
1/2-1/20			~%\- -		
117			A STORY		
M/V			K-1/25"	٠.	
*		6	<b>≫</b> '	W. The second se	

#### 8 环境影响经济损益分析

#### 8.1 综合效应分析》

项目建成投产后,可实现工业园区废水分类处理和分质处理,可有效降低工业废水的污染物排放量,同时也为园区企业发展提供基础保障,间接带动区域经济发展与劳动就业。具有良好的社会、经济及环境效益。

#### 8.2 环境经济效益分析

#### 8.2.1 环保投资估算

项目总投资约为 28400.69 万元(包含建设期利息),属于环境保护工程,环保投资估算是针对全部工程污染治理的投入。环保设施及其投资见表 8.1。环保投资约为万元,占项目总投资的%。

╱ 表 8.1 项目主要二次污染环保设施及其投资一览表

	//\	NOC NEXT NOTICE TO A STATE OF THE STATE OF T	
序号	类别	环保措施	投资金额(万元)
1		1 套生物除臭设备及 1 根 15m 排气筒; 调节池、混凝池、格栅池、水解酸化池、污泥池等池体密封 及设置引风管 厂区内定期喷洒生物除臭剂	i.
127	废水	厂区雨污分流、清污分流;废水进入项目进行处理	
<u>4.73</u>	-	重点区域和一般污染防治区的防渗措施;设置监控井	
4	噪声	房隔声、设备减振消声装置	
5	固废	设置储存场所,分类收集、分类处理。	
6	风险	在线探头等	
7	せん たった ヤヤ	规范化排污口、标示牌;按监测计划定期升展监测工作;编制应急预案并定期演练、编制台账 众	
总计	N K	<u> </u>	3,7

#### 8.2.2 环保措施的费用指标估算

(1)环保措施的折旧费

各项环保措施的固定资产形成率为100%,残值率按5%计,平均按10年折旧计算,则环保措施的折旧费约为6.4万元/x(防渗工程不计入)。

#### (2)环保措施的运行费

主要是设备的动力费和药剂费等,废气处理费约5万元/车,固废处理费月96.7万元/a,合计费用约101.7万元/a。此外,维修费按环保运行投资的4%计(防渗工程不计入),即维修费约为5.14万元。运行费总计106.84万元/a。

#### (3)环保措施的费用指标

由上述3项费用构成的环保运转成本为113.24万元/a。

#### 8.2.3 环保投资正面收益分析

运营其对环境产生的影响主要是生产运营期产生的二次废(污)减、设备噪声、废气、固废排放等。本工程进行必要的控制措施,其环境保护投资为228.56万元。环保投资占总投资的4.23%,环保投资估算是比较合理的,有保障的。

项目将对预处理构筑物、水解酸化池、污泥处置系统分别建设恶臭气体净化处理系统,有效控制了恶臭气体的排放,减少了构筑物和军间恶臭气体的无组织排放,使厂区废气能够达标排放,降低对周边环境的影响

项目对高噪声设备的噪声治理,降低设备噪声,使厂界噪声排放达到《私业企业厂界环境噪声排放标准》(GB12348-2008)中的3类。

项目将加强污水处理构筑物等设施的防渗性能,避免废(污)水渗入地下,对厂区土 要环境及地下水环境质量造成污染影响。

此外,厂区内绿化工程的建设,改善了环境空气,美化了厂区环境,也为职工营造了良好的工作环境。

#### 8.3 企业经济效益分析

拟建项目营业收入主要来源是污水处理收费, 收费价格标准如下:

根据可研推算,工程污水处理收费标准为3.30元/吨废水。项目完成后,收入约为1204.5万元/a,运行总成本支出约为341.8万元/a。项目投资财务内部收益率(税后)为6.42%,该项目生产能力达到设计能力的28.3%时,企业可保本经营,可见本项目具备定的抗风险能力。

可研根据项目投资、运行费用、设计服务年限、收费指标等指标进行测算,认为项目具备了还贷和盈利能力,具有良好的抗风险能力。

#### 8.4 社会效益分析

本工程是一项保护环境工程,属于社会公益环保设施,是社会效益、环境效益发于经济效益的建设项目,它既是生产部门必不可少的生产条件,又是改善环境的必要条件。

- (1)本项目的建设,将有效地解决工业园区企业废水问题,改善水环境质量,降低污染物排放量,实现工业污染源全面达标排放。
- (2)进一步改善工业园区的投资环境,吸引更多的项目投资、促进经济的可持续发展,对发展经济具有积极作用。
- (3)提高当地居民的环保意识,促进当地环保事业的发展。其间接经济效益远大于工程的直接经济效益,社会效益、环境效益十分显著。
- (4)提高城市基础设施系统支持能力污水治理工程是城市基础设施系统的重要组成部分,从根本上保证污水处理厂出水水质及稳定达标,从而进一步完善城市基础设施系统对能,提高基础设施系统对城市社会经济发展的支持能力。

#### **8.5** 环境效益分析

本项目环境效益是本工程实施和完成后所能体现的最直接的工程效益。其主要表现在以下几个方面:

XII THE

- · 146·
  (2)工程的实施将有效地削减工程服务范围内的污染物排放量,有助于该地区的水善。
  (3)项目是水达到《城镇污水处理厂污染物排放标准》(GB18918-2002)— 达林台排入安海湾深海。从区域纳污能力产量:

一定用減工程服务范围内的污染物排放量,有助于该地区的一定,以其是水达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准处理达机治排入安海湾深海。从区域纳污能力总量控制角度出发,能有处地缓解区域水功能区污染物总量控制的压力。对设善区域水环境质量,保护地表水环境起到非常重要的作用,环境效益十分显著。 Althor the state of the state o Attended by the state of the st WHITE THE WAR 人。 大學學 大學 湖湖 

圳荣

大型 大型

#### 9 评价结论与建议

#### 9.1 项目概况

项目位于泉州半导体高新技术产业园晋江分园区,服务范围为该工业区的工业废水。远期总处理规模为 4 万 m³/d,本次建设规模和评价对项目为一期工程 2 万 m³/d,并配套建设有办公楼及其它辅助配套设施。

为了保证区域居民和企业能够正常生活、生产经营,实现区域的可持续发展,提高区域环境质量,改善近海流域的水质,促进城市生态建设和社会经济的发展,本次拟新增2万 m³/d 处理规模。

本工程内容主要新增处理污水处理能力 2 万 m³/d, 主要新建的调节池、前置高效过滤池、A²/O 池一座、深度处理设施、污泥浓缩池。配套建设的主要污染防治措施包括:①恶臭气体处理系统;②污水处理构筑物、污泥浓缩池、污水管网等的防渗措施;③对噪声设备进行减震、隔声、吸声处理。

#### 9.2 工程环境影响评价结论

#### 9.2.1 大气环境影响评价结论

(1)大气环境保护目标

大气环境保护对象为周围居民区东石镇区等,大气环境保护目标是评价范围内环境空气质量达到二类环境空气功能区划要求。

(2)环境空气质量现状

现状监测结果表明,各监测点 NH₃、H₂S等处的浓度指标均能满足环境空气质量标准要求,评价区环境空气质量现状良好。

(3)大气环境影响分析

根据预测,正常排放工况下,本项目新增污染源及叠加周边污染源预测情形下, $NH_3 \cap H_2S$ 等在环境空气保护目标处预测浓度都能满足评价标准要求,对周边居民人体健康不会造成影响。

非正常排放情况下,污染物对周边关心点的预测值不会出现超标,但是有所增大且网格点占标率超100%。故企业应加强项目管理,确保各项环保设施正常运行,避免事故工况发生导致废气污染物排放对环境造成不利影响。

(4)大气工生防护及大气防护距离

本项目 200m 范围内无居住区,故周边环境能满足污水厂大气环境防护范围的要求。相关部门以后在污水厂大气环境防护范围内今后不得规划居民点、医院和学校等敏感

- (5)废气污染控制措施
- ①初级构筑物废气

程初级构筑物已将恶臭气体通过引风管、引风机引入恶臭气体净化系统进行处理。恶臭气体净化工艺采用"生物除臭"工艺,最后通过13m高排气筒达标排放。

②污泥处理系统恶臭气体处理措施

污泥处理过程会散发出各种恶臭气体。对集泥井、污泥浓缩池已进行加盖密闭、污泥脱水的所有的门窗做密闭处理。并设置风管(横向及竖向均进行布置、形成立体式抽风方式),收集的废气在各车间分别配套"生物除臭"净化装置,处理达标后废气经25m高排气筒排放。

- ③无组织废气排放控制措施
- a.水泵等主要设备1用1备或多台并联运行,避免事故排放;
- b.各种处理池停产修理时,池底积泥会暴露出来散发臭气,应采及时清除淤泥;
- c.污水处理站实时投加或喷洒化学除臭剂进行除臭;
- d.定期清理调节池、沉淀池等工艺单元中的浮渣,及时处置工艺过程中产生的污泥等污染物、避免长时间堆放散发臭味,干污泥外运应采用加盖封闭的运输车,以免在处置过程对外环境造成二次污染。

#### 9.2.2 地表水环境影响评价结论

(1)水环境保护目标

项目尾水达到《城镇污水处理厂污染物排放标准》(**681**8918-2002)一级 A 排放标准后,依托区域污水厂尾水排放工程的排海管道排入围尖湾海域。

- (2)水环境影响分析
- ①污水处理设施达标排放可行性分析

本项目采用"A²/O"处理工艺。A²/O工艺更符合脱氮处理流程,脱氮数果更好, 其占地小,充氧效率高均优于传统工艺。通过与二期工程的类比,该工艺出水水质稳 定高效,并且有较大的净化潜力、油此判断,该工艺对污水处理达标排放是可行的。

②本项目对区域污染物排放总量削减的意义

服务区内收集的废(污)水经处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A排放标准后排海,避免了废(污)水因直接排放而造成更大的环境污染问题,本项目的建设削减了区域水污染物排放量,对区域污染物总量的削减起到积极作用。

# 9.2.4 地下水环境影响评价结论

环境保护目标

地下水环境保护目标为安东工业区和周边地下水环境。

(2)地下水环境质量现状

项目周边监测水井各项监测因子均满足《地下水质量标准》中III类要求。

XI) XX

根据区域水文地质调查和民井水位的测量资料显示、东石的肖下~龙下~永坑一带外侧的海水、咸水渗透入侵趋势;且经几百万年作用已被淡化的海陆交互接触地带的淡水返咸,评价分析认为厂区水井水质超标主要原因为项目厂区紧邻安海湾,且场地为填海区域,因此区域地下水受海水入侵影响,导致地下水超标严重。

#### (3)地下水环境影响评价结论

评价模拟建设项目在发生构筑物底部裂缝的情况下,造成污水下渗,影响地下水的情景,预测结果显示,在发生污水处理构筑物底部发生裂缝情况下,对厂址地下水有很大影响,随着时间推移。污染物浓度会有所降低。项目拟选为工业区,地下水下游无水源,所在地下水为成水,发生最不利情况下,不会对周边饮用水安全造成影响。

#### (3)地下水污染防治措施

根据本工程建设的特点,废水处理设施、集泥并、污泥浓缩池、废水收集管道、水处理药剂之库、加药间、污泥脱水间等构筑物等划分为重点污染防治区进行重点防渗。

为掌握厂区周围地下水环境质量状况和地下水体中污染物的动态变化,应设置 3 地下水长期监控井,定期开展地下水水质监测。

#### 9.2.4 声环境影响评价结论

(1)声学环境保护目标

本项目位于安东工业区的中西部,项目周边主要为工业厂房,厂界外 200m 范围内没有声环境敏感目标分布。

#### (2)声环境质量现状

根据噪声监测结果,各监测点位噪声测值均能符合《声环境质量标准》 (GB3096-2008)3 类标准限值要求,评价区域声学环境质量状况良好。

#### (3)声环境影响分析

项目生产噪声源主要来各类泵、电机、鼓风机、引风机等/对高噪声设备采用基座减震、隔声等综合措施后,根据预测,本项目对厂界噪声贡献值不大,叠加现状噪声监测值后,厂界四周环境噪声均能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)表 1 的 3 类区标准(昼间≤65dB, 夜间≤55dB)要求。

#### (4)噪声控制措施

本项目噪声污染防治首先是从声源上进行控制,其次应采取有效的隔点、消声、吸声等控制措施对噪声进行有效控制,噪声防治措施与建议如下:

①在更换选购设备时,应尽量选用低噪设备,国家已将噪声作为产品出厂检验的 硬性指标,而对于必不可少的高噪设备在订货时应同时定其配套降噪措施。

XIIX

- ②在进行厂区平面布局设计时,统筹规划、合理布局、将高噪设备相对集中在厂区中间,避免露天或高空布置,并与办公区拉开距离,有利于噪声的衰减。
- ③对于风机、水泵等设备在不影响其检修散热的条件下,选用相应的吸声、**隔声**材料做成消产器、隔声罩等,并进行减震处理,若能同时对门窗、缝隙等进行密封效果会更好。
  - ④在运行管理人员集中的控制室体,门窗处设置吸声装置(如密封门窗等),室内设置吸声吊顶,以减少噪声对运行人员的影响,使其工作环境达到允许噪声标准。
    - ⑤维持设备处于良好的运行状态,避免设备运转不正常时造成厂界噪声超标。
    - ⑥厂房设计时充分考虑和采用吸声和隔声材料和技术措施。
- ⑦加强厂区绿化,保证绿化率达到规定的标准。建议在厂区周围和进出厂道路以及厂区运输干道两侧,种植树木隔离带,降低噪声对环境的影响。

#### 9.2.5 固体废物影响评价结论

项目产生的固体废物污染源主要有栅道、污泥和生活垃圾等。

根据对本项目固废的处置分析,污泥可参照现有工程的处置方式,送瀚蓝环保公 高处置;厂区职工生活垃圾、厂区食堂餐厨垃圾经规范分类收集后,委托当地环卫部 门定期清运处置。本项目产生的固体废物均得到有效处置或回收利用。

#### 9.2.6 环境风险评价结论 🕢

污水处理工程存在一定的环境风险,包括对附近海域的污染、对环境空气的影响以及对地下水的影响,严重时可能导致人身伤害事故,在设计中应充分考虑到可能的风险事故并采取必要的措施,在日常工作中加强管理,预防和及时处理风险事故,减少可能的环境影响及经济损失。

### 9.3 环境管理与监测计划

#### 9.3.1 环境管理

企业目前已配备3名管理人员,负责该项目的环境保护和监测管理工作:

- (1)贯彻国家环境保护法,监督各生产单元对环保法规的执行情况,并负责组织制订环保管理条例细则。
- (2)掌握各生产单元的污染状况并建立污染档案。按照污染物排放指标,环保设施运行指标等,实行环境保护统计工作的动态管理。确保生产过程中"水、气、声、渣"排放达到国家和地方标准;
- 了根据公司污染物排放状况,负责制定出本企业环保年度计划和长远计划,参加 环保项目方案的审查及实施。

#### 9.3.2 环境监测

针对项目周边的环境特殊性,设置经常性的环境监测点与监测项目,掌握营运过

:据记忆

湖湖

一旦, 拉位泉州半导体, 符合土地利用规划。作为区域是一个业及环境保护政策要求,未纳入负面清单管理一个工艺成熟稳定。 项目建设应将本报告提出的各项环保措施和 施逐一落实在下一步的数型环保验收及日常运行管理中,可满足国家各项,控制标准和做到稳定达标排放,从环境影响角度分析。 项目建设是可行的。 

Attended by the state of the st WHITE THE WAR AHATA THE REVISION OF THE PARTY OF THE PART 

树花